PORT QUENDALL INVESTIGATION

TABLE OF CONTENTS

			Page
1.0	INTRODU	CTION	1
2.0	METHODS		3
	Data Re		3
	_	and Soil Sampling	4
		stallation, Testing, and Sampling	6
	Trenchi	-	9
	Laborat	ory Analyses	10
3.0	GEOLOGY		14
4.0	HYDROLO	GY	18
5.0	CHEMICA	L RESIDUES	20
	Soils		20
	Water		23
6.0	REFEREN	CES	26
APPE	NDIX A:	Boring and Water Well Logs	
APPE	NDIX B:	Field Water Sampling and Water Level Data Sheets	
APPE	NDIX C:	Transmissibility Calculations for Selected Wells	٠.
APPE	NDIX D:	Analytical Methods and Results	

This report identifies the types of chemical residues present in the soils and groundwater of the Port Quendall property, describes the hydrogeologic setting of the site, and provides a preliminary characterization of the magnitude and distribution of potential contamination on the property. The purpose of the report is to provide information for the preparation of remedial actions that are necessary and consistent with the development plans for the property.

The Port Quendall property is located on the southeastern shore of Lake Washington, west of the 44th Street overpass to Highway 405, and north of the commercial center of the City of Renton (Figure 1). Port Quendall is jointly owned by Puget Timber Inc. and Altino Property Inc. At the present time, the property is leased to Seaboard Lumber Company for log storage.

Studies conducted for the evaluation of the property can be divided into the following elements:

- A review of geological, hydrological, and other available data pertinent to the property, including interviews with individuals knowledgeable on previous hydrogeologic studies of the area and past industrial activities conducted on the site.
- Drilling, soil sampling, and installation of monitoring wells.

- Excavation, logging, and sampling of trenches.
- Hydrologic testing and sampling of water monitoring wells.
- · Laboratory analysis of water and soil samples.

This report is organized into the following sections:

- 1.0 INTRODUCTION
- 2.0 METHODS: Description of the methods used in conducting the studies outlined above.
- 3.0 GEOLOGY: Description of the geologic setting of the Port Quendall property
- 4.0 HYDROLOGY: Description of the groundwater hydrology of the property
- 5.0 CHEMICAL RESIDUES:

Identification of the types of chemical residues in the soils and groundwater on the property and preliminary evaluation of the quantities and distribution of these residues.

6.0 REFERENCES

Appendix A: Field Boring Logs

Appendix B: Field Water Sampling Data Sheets and Water Level Data

Sheet

Appendix C: Transmissibility Calculations for Selected Wells

Appendix D: Analytical Methods and Results

2.0

METHODS

DATA REVIEW

Prior to initiating field investigations, publications and other data relevant to an understanding of the hydrogeologic conditions on the property were reviewed. Primary sources of information included the library of the Washington State Department of Natural Resources, the University of Washington Library, and CH₂M-Hill Company. A listing of publications relevant to this study is provided in Section 6.0.

In addition to the literature review, aerial photographs of the project area taken in 1936, 1941, 1946, and 1960 were examined. These photographs made it possible to locate former stream channels, building sites, sumps, and other features of the property that could represent sites of potential contamination.

Meetings with the current owners of Port Quendall provided insight to earlier investigations conducted on the property and the nature of the industrial activities that occurred there. Mr. Ward Roberts, a former plant operations manager at the Reilly Tar and Chemical facility that used to occupy the property, furnished an interview and site tour. Mr. Roberts roughly mapped out the industrial facilities present on the property during his period of employment there, and described the nature of the chemical processing and landfill operations that took place at that time. Mr. Neil Twelker of Neil Twelker and Associates, Seattle, Washington, was interviewed with regard to his earlier geologic investigations

of the property. He provided a location map of borings and cross sections done by his firm in January 1971.

BORING AND SOIL SAMPLING

Data from the literature review, aerial photographs, and interviews were used to develop a base map of the likely areas of contamination on the property. These areas included the sites of chemical process buildings, tanks, and sumps; landfills containing industrial waste; and an earlier, filled-in channel of May Creek (Figure 2).

The base map was used to plan the soil and groundwater field investigations of the property. Soil borings, water monitoring wells, and trenches were located to verify likely areas of high contamination, as well as areas that contained minimal levels or no hazardous materials.

A total of 18 borings were drilled to an average depth of approximately 10 to 20 feet below the ground surface (Figure 2). The borings were limited to a maximum depth of about 20 feet in order to prevent possible transfer of contamination to or from deeper horizons when some of the borings were converted to water wells.

The borings were completed with a truck-mounted B-61 drill equipped with both 4- and 6-inch inside diameter (I.D.) hollow stem augers. If the boring was designated solely for soil sampling, or sampling and the installation of a 2-inch diameter well, the 4-inch I.D. auger was used for drilling. The 6-inch I.D. auger was used when a 4-inch diameter well was designated for installation after completion of the boring.

The soil sampling program was designed to obtain the maximum information on contamination in the upper 10 feet of the ground. As conditions permitted, samples were collected continuously in each boring to an average depth of 10 feet. Below that depth, the sampling interval was increased to an average of 4 to 5 feet to the bottom of the hole.

Two types of soil samplers were on hand throughout the program: an 18-inch long, 1-3/8-inch I.D. split spoon (ASTM D-1586) and a 3-foot long, 2.8-inch I.D. Shelby tube sampler. Successful recovery is accomplished with the split spoon sampler in granular or mixed soils, while the Shelby tube sampler is more effective in clay or clayey soils. Since good recovery was achieved with the split spoon, it was used throughout the program.

To collect the soil samples, the auger drill was advanced to the desired depth and the sampler was lowered through the center of the hollow stem with connecting rods. The connecting rod/sampler assembly was then driven into the soil with a 140 pound hammer. A record was kept of the number of blows required to drive the sampler.

After being driven into the soil, the sampler was removed, opened, and the soil sample was transferred to sterilized glass jars with teflon lids. These containers were supplied by Laucks Laboratories of Seattle, Washington. As the jars were filled and sealed, they were placed in ice chests at the site. The samples were taken in the chests to the laboratory on a daily basis to minimize excessive dissipation of volatiles prior to laboratory analysis. Each jar was labeled clearly with the boring number, sample number, and name of the attending geologist. In addition, sample depths and identification numbers were recorded on the field log for each boring. To establish the chain of custody, the samples were logged in at the laboratory as they were delivered.

Following removal of the sample, the split spoon was subjected to a three phase cleaning before reassembly to avoid contamination between samples. All components of the sampler were washed and scrubbed in soap and water. This was followed by a rinse with methyl alcohol and a final wash with triple distilled, deionized water. As a check on the thoroughness of the cleaning procedure, control samples of distilled water run

across the cleaned surfaces of the sampler, as well as the distilled water itself, were periodically taken to the laboratory for analysis. These samples were identified as the "W" series.

To prevent the possibility of transfer of contamination from one boring to another, augers and peripheral equipment were steam cleaned and scrubbed between borings. In addition, casings for each well were steam cleaned prior to installation. As a further precaution against contamination, all auger cuttings were shoveled into good quality reconditioned barrels and stored at each boring location. Lids were fixed on the barrels and the source boring for each barrel was marked in heavy felt pen for easy identification in future handling.

During drilling, a field log of each boring was taken by the onsite geologist. A rock/soil description, Unified Soil Classification System field designation, color, texture, moisture, sample number and depth, and standard penetration test (SPT) blow counts were recorded on the logs with depth. These logs are provided in Appendix A. A lithologic sketch log appears in one column using appropriate symbols for sand, clay, and other materials encountered during drilling. Another column was used on the log of each boring converted to a well to denote design placement of slotted screen and blank sections of casing. In borings used only for well installation, the log records only the design of the well.

WELL INSTALLATION, TESTING, AND SAMPLING

A total of 12 water monitoring wells were installed in borings on the Port Quendall property. These wells were designed to sample groundwater, provide a stationary, surveyed reference for measurement of static water levels, and provide data on aquifer performance.

Stainless steel screen and riser pipes were used in one well and the others were completed with threaded PVC screen and blank sections. Three of the wells were 2-inch I.D., while the remainder were 4-inch I.D. At

2.0

selected locations, multiple wells were installed so that separate intervals could be monitored independently. Well coordinates, ground elevations, and measuring point elevations for the top of each well casing were surveyed in by a registered surveyor. A summary of the physical specifications for each well including total depth, ground elevation, measuring point elevation, diameter, material for casing and screen, and coordinate location is provided in Table 1.

Each well was installed immediately following auger boring and soil sampling. After the auger drill was advanced to the desired depth, the well casing, including bottom cap, was lowered through the center of the auger and allowed to rest on the bottom of the hole. A sand-gravel pack was poured through the auger as it was removed from the hole to assure a good continuous pack around the annulus of the well screen or slotted section. This sanding process was discontinued one to two feet above the screened section and bentonite pellets followed by a bentonite-cement slurry was then placed in the annulus to provide a seal as a precaution against intercommunication between the surface and screened zones. Finally, a cement cap approximately one foot thick was poured flush with the ground to stabilize the well head. "As built" diagrams for the wells are provided on the log sheets in Appendix A.

Where PVC was used for casing material, threaded slotted and blank sections were used with no glue or adhesives of any kind as a precaution against this source of possible sample contamination. As previously mentioned, both stainless steel and PVC casing sections were thoroughly steam cleaned prior to installation.

Following completion, each well was jetted with air using a PVC pipe set in the casing and a trailer-mounted compressor unit. The jetting was performed to assure satisfactory initial flushing of the sand-gravel pack and to improve the flow of groundwater into the well. Each well was then pumped with an electric pump to remove an equivalent of three well volumes of water. This was done to assure that samples obtained from the

wells were representative of ambient groundwater conditions. If the well was incapable of delivering a satisfactory volume of water to the pump, hand bailing was employed to condition the well.

To prevent possible contamination, pump discharge was diverted directly into clean 50 gallon, closed-top drums. Each drum was labeled with the borehole number for ease of future identification and handling.

A detailed record of performance was maintained during the pumping and subsequent recovery period for each well. Prior to pumping, the static water level was measured and referenced to the surveyed measuring point on the top of the casing. The time and depth to water was noted during pumping and during the recovery period after pumping was stopped.

All static water level measurements were made with a steel tape accurate to 1/100 foot; recovery data was obtained using an electrical meter sounding device with a tested repeat accuracy equivalent to the steel tape. The use of the electric sounder was necessary because of the rapid changes in water levels observed during the recovery period.

Frequent water samples were taken during the pumping period and tested in the field to determine temperature, pH, and specific conductivity of the water. These measurements were taken with a thermometer, pH meter, and a conductivity-resistivity bridge. A summary of all information obtained during sampling is provided in Appendices B and C.

Following the pump and recovery testing, a sterilized teflon bailer of suitable diameter was used to bail an additional well volume from each well prior to sampling. Water samples were carefully poured into preconditioned, labeled containers furnished by Laucks Laboratories, Inc. These samples were stored in an ice chest onsite until they could be transported to the laboratory. Chain of custody procedures similar to those described for the soil samples were observed.

The bailer was subjected to the same three phase cleaning procedures as the split spoon between collection of each water sample. To further assure against contamination, new ropes were used on the bailers for each well sampled.

At the conclusion of water sampling, the static water level in each well was measured over a brief period of time using a chalked steel tape referenced to the surveyed measuring point marked at the top of each well casing. In addition, the level of Lake Washington was surveyed in at this time. This information is provided in Appendix B.

TRENCHING

In an effort to augment the drilling program, a limited amount of trenching was performed on the Port Quendall property. The principal objectives of the trenching were to delineate with some accuracy the alignment or location of the original May Creek channel (1917 to 1930) identified during meetings with Mr. Ward Roberts, and to provide a preliminary assessment of the vertical and lateral distribution and nature of the fill disposed on the site from the Pacific Car and Foundary Company or other sources.

A total of four trenches having a combined or cumulative length of 252 feet were excavated to depths averaging 8 feet using a backhoe with a 36-inch wide bucket. The locations of these trenches are provided in Figure 2.

Upon completion of the excavation, a scale detailed log was made of each trench (Figures 3 and 4). A string level line was placed along one wall of the trench for vertical reference and a reel tape was used along this line for stationing or horizontal control. Following a preliminary visual inspection of the entire trench, significant features including soil types, lithologic contacts, contaminant seeps, cultural debris, and sample locations were sketched in using a small hand tape to provide a reference to the established level line and stationing.

Soil samples were collected at selected locations within the trenches using a small scraper. These samples were placed in sterilized glass jars with teflon lids provided by Laucks Laboratories, Inc. Onsite storage of the samples and transfer procedures to the laboratory were identical to those used for the samples collected from borings. At the conclusion of sampling, each trench was backfilled and the surface restored to its original contour.

LABORATORY ANALYSES

Table 2 lists the various methods used to analyze the soil and water samples and the number of samples analyzed by each method. The soil samples were screened for polycyclic aromatic hydrocarbons (PAH) by absorbence. This method involves methylene chloride extraction, evaporation of the methylene chloride, and re-dissolving the extract in cyclohexane, followed by measurement of the absorbance at 250 nanometers. The absorbence was compared with benzo(a)pyrene standards.

Absorbance was used instead of fluorescence to screen PAHs because of the inability to visually compare fluorescence sample extracts with benzo(a)pyrene standards. This inability is caused by differences in fluorescent color.

Uncertainties in the absorbance screen can be caused by the presence of such compounds as napthalene, acenapthylene, and acenapthene in the extract. These compounds tend to quench absorption of higher ring compounds. Absorption cannot distinguish between PAHs with different numbers of aromatic rings. Further description of the procedure used for the absorption screening is contained in Appendix D-1.

In addition to using the absorbance screen to determine PAH concentrations, a Washington State Department of Ecology (DOE) method was used to determine the PAH concentration in six soil samples for cross-comparison purposes. The DOE method uses a series of extractions to

isolate PAH compounds followed by evaporation and weighing. An optional analysis step of the DOE procedure uses high pressure liquid chromatography (HPLC) to separate 2- and 3-ring PAHs from the larger ring PAHs. These larger ring compounds are the only PAHs considered in the DOE definition of an extremely hazardous waste on the basis of PAH content. This optional analysis step was used in the study.

The volatile organic screen for soil samples was performed by an extraction procedure followed by gas chromatographic (GC) analysis. Selected extractions followed by a gas chromatograph/mass spectrometer (GC/MS) scan were used in the analysis for priority pollutants. The GC/MS results provide an additional measure for determining and cross-checking PAH concentrations. Polycyclic aromatic hydrocarbons would appear in the GC/MS scan of the base-neutral extract.

The PAH content of water samples was determined by the same general DOE method used for soil samples. However, the optional HPLC analysis step was followed by measurement of absorption and comparison to benzo(a)pyrene standards.

Volatile aromatics in water were determined by use of a purge-andtrap procedure followed by GC analysis. A photoionization detector was used following passage of the volatiles through the GC.

Pentachlorophenol concentrations in water samples were determined by the Sep-Pak method which involves acidification, passage of the water through an activated Sep-Pak, elution of the Sep-Pak, followed by HPLC analysis. Further discussion of this method is provided in Appendix D-1.

Quality Assurance and Control

A quality assurance/control program was instituted for the laboratory analyses of soil and water samples collected at the Port Quendall property. The program included the use of three techniques:

- replicate analyses for the mineral (inorganic) constituents,
 2,4,6-trichlorophenol, pentachlorophenol, benzo(k)fluoranthene,
 and total PAHs to determine the relative or absolute error in replicate analysis
- spiking studies to define the accuracy of the results obtained on the mineral parameters
- surrogate blind spiking for benzo(k)fluoranthene and 2,4,6trichlorophenol to define the accuracy of data generated for these parameters.

The results of the replicate analysis and spiking studies are presented in Appendix D. Appendix D-2, which reports the replicate analysis, indicates that the results obtained for the mineral parameters are highly reproducible in spite of the lack of established control limits. The relative error values for the organic parameters indicated that the methods performed very effectively, except in the case of 2,4,6trichlorophenol. A large disparity between duplicate analyses for the 2,4,6-trichlorophenol indicates that the "standard" analytical methodology used for this compound may need to be modified if extensive monitoring is undertaken on the property. Spiking results presented in Appendix D-3 for the mineral parameters indicate that the data for these compounds is highly accurate. Appendix D-4 presents data for the surrogate recovery of benzo(k)fluoranthene and 2,4,6-trichlorophenol. These data indicate that benzo(k)fluoranthene was present in some of the samples making it an inappropriate choice as a surrogate blind spiking compound and that some samples had a large organic matrix which possessed an affinity for 2,4,6-trichlorophenol, interfering with the extraction process.

The three 2,4,6-trichlorophenol recovery values which indicated an interference were below the lower control limit. These results indicate that the removal of the selected compounds is less than quantitative (100)

percent) by the extraction step of the analytical method. This result is neither surprising nor a flaw in the experimental design. It indicates that either the analytical method requires "tuning" to be appropriate for gathering quantitative data, or the data need to be corrected for recovery of 2,4,6-trichlorophenol.

The Port Quendall property is located on a delta/alluvial fan complex which developed at the original mouth of May Creek where it flowed into Lake Washington. The creek has been diverted several times and since 1969, it has flowed in a south-southwesterly direction across the eastern side of the delta/fan, entering Lake Washington at the southern end of the Barbee Mill property. This property is located immediately south of Port Quendall.

Prior to 1916, about three quarters of the delta/fan area exposed today was below lake level. In that year, the ship canal was cut between Lake Washington and Union Lake, resulting in the lowering of Lake Washington from 22 feet to 14 feet above sea level (Liesch et al. 1963). This exposed much of the delta, and since that time considerable filling has been done to accommodate use of the property.

The May Creek delta/fan complex consists of sands, clay, silt, gravel, and in some locations, abundant peat interbeds, all overlain by recent fill. Source materials of the natural deposits include drift and till units incised by the creek.

A cross section drawn roughly on a east-west axis through the center of the property is provided in Figure 5. (The location of the cross section is shown in Figure 2.) As can be seen in the figure, there is too much variability in the materials composing the delta to correlate

lithology between the borings used to construct the cross section. Highly variable lithology is typical of alluvial fan/delta complexes where braided channels continuously meander back and forth across the surface, depositing lenses of gravel and coarse sand in channels and finer materials along the flanks, creating an irregular stratigraphic record during the course of deposition.

It is postulated that the May Creek delta/fan is underlain by the lower clay unit described by Liesch et al. (1963) (Qcl on Figure 6). Liesch suggests that this unit is relatively widespread in northwestern King County. It outcrops to the north of the Port Quendall property on Mercer Island and the mainland. The unit underlies the southeastern arm of Lake Washington and Mercer Island, dipping gently westward along both its upper and lower contacts.

The lower clay unit is approximately 50 feet thick and is composed almost entirely of gray, blue, and brown clay and silt. The unit is thick bedded to laminated and was deposited for the most part in standing water, with the clay being locally varyed. Wells drilled into the lower clay unit in northwest King County are reported to yield little water. It appears that the unit acts as an aquitard, inhibiting the downward movement of water from younger sediments.

The total thickness of the May Creek delta/fan is not yet known. the delta/fan was not penetrated during the drilling program conducted for this study. A previous exploration program (Twelker 1971) with borings up to 61 feet deep does not appear to have reached the bottom of the delta/fan either since a stratigraphic unit similar to the lower clay unit is not shown on the cross sections generated from that program.

Twelker (1971) indicates that the delta/fan can be divided into at least an upper and lower unit. He has described the upper unit as a

loose to medium-dense sand with thin layers of peat and silt. The lower unit consists of dense sand with gravel lenses and no peat. Based on this description, borings conducted for the current study were located in the upper unit of the delta/fan.

Trench T-1 cut across the original May Creek channel on the east side of the Port Quendall property (Figures 2 and 3). The log for this trench clearly defines the margins of a channel containing clay, sand and gravel lenses, and abundant cultural debris including tar fragments, bricks, and wood. The delta deposits flanking the channel, as well as the channel itself, appear to be overlain by a relatively recent aggregate fill averaging two feet in thickness with a thin silt layer at the surface.

Trench T-2 was located near the center of the old May Creek channel. The stratigraphic relationship between the channel and fill deposits in this trench was similar to that of trench T-1 (Figure 3). Mobile creosote began to seep from the walls of T-2 at several levels throughout the time that the excavation was open.

Trench T-3 was sited along the center line of the original May Creek channel. The log for this trench shows the somewhat irregular but distinctive erosional contact of the channel with underlying delta/fan deposits (Figure 3). Channel deposits exposed in the T-3 excavation consisted of sand, silt, metal, and tar fragments. Mobile creosote seeped from the channel section of the walls of the trench during the time that the excavation was exposed. An iridescent sheen appeared on the surface of groundwater which accumulated in the floor of the trench accompanied by a heavy hydrocarbon odor. Channel and delta/fan deposits in the trench were covered by a 2- to 3-foot thick mantle of fill consisting of silt and wood fibre shavings.

Trench T-4 was positioned to determine the type of fill or possible contaminants present in the area reported to have been used for industrial fill from the Pacific Car and Foundary Company. The log for T-4 (Figure 4) shows a variety of semi-stratified fill materials including sand, tar fragments, metal, brick, glass, and wood fiber. In addition, mobile creosote seeped from the walls near the south end of the trench at the time it was excavated. It appears that undisturbed delta/fan deposits consisting of sand and gravel with clay lenses occupied the lower ½ to ½ of the trench between approximately Station 0 and Station 42 (Figure 4). A seep or spring line is present along the top of the undulating contact between the delta/fan and overlying fill material near the south end of the trench.

Boring BH-5 was located approximately 17 feet from the south end of Trench T-4. Contamination was noted as deep as 20 feet in that boring. By extrapolation, it is conceivable that contamination may exist to at least that depth in permeable materials below Trench T-4, having migrated from upper horizons. On the basis of findings in Trench T-4, it would appear that contaminated fill covers much of the area north of the tank farm (Figure 2).

Groundwater hydrology characteristics may vary across the Port Quendall property in response to the variability in the stratigraphy and lithology of the May Creek delta/fan sediments. However, some general trends in the groundwater regime can be identified.

Recharge of the groundwater aquifer on the property occurs primarily in the upper reaches of the May Creek drainage basin, which covers approximately 8100 acres (CH₂M-Hill 1977). However, some recharge also occurs by infiltration of precipitation that falls directly on the site. The surface of the groundwater table on the property slopes toward the northwest, and varies from a mapped elevation of almost 19 feet near the site of the former Rielly Tar and Chemical Company still house to about 15 feet at Lake Washington (Figure 7). This results in a groundwater surface gradient of about 42 feet/mile (0.0079 foot/foot) with a total hydraulic head of about 6 feet across the property. Based on an examination and review of the local geology, the stratigraphy exposed in exploration borings, and the study of the depositional environment of the May Creek delta/fan, it is interpreted that groundwater discharge is into the sub-bottom of Lake Washington in the near shore environment.

Although the groundwater surface on the property is generally uniform (as indicated by the generally uniform pattern of the water level surface contours), there are some variations. For example, in the southwestern

portion of the property, near boring BH-12, the groundwater surface contours become closely spaced and skewed toward the shoreline of Lake Washington (Figure 7). At this location, the groundwater gradient increases to about 95 feet/mile (0.018 foot/foot) and may reflect local semiconfined groundwater conditions resulting from the variable nature of the delta/fan sediments. In the northeastern corner of the property, the water level contours are less closely spaced resulting in a lower gradient of about 19 feet/mile (0.0036 foot/foot). This variation may also be caused by the variable nature of the sediments.

A study of the coefficient of transmissibility across the property, as calculated from pump tests at selected wells, illustrates the variability of local groundwater flow. Transmissibility of an aquifer is a measure of the rate of flow of water subject to a unit hydraulic head through a vertical strip of soil one foot high. In general, relatively high values of transmissibility indicate high rates of groundwater movement. Table 3 lists the calculated values of transmissibility at five selected wells on the Port Quendall property. Based on estimates of saturated thickness provided in the boring logs and estimates of representative porosity for the sediments, the velocity of groundwater travel . 0.019 St/day at each boring was estimated. As indicated in Table 3, the estimated groundwater velocities across the site vary from about 7 feet/year to almost 60 feet/year and are greatest near the center and southwestern portion of the property.

19

0.16 St/day

The following section provides a preliminary evaluation of the location and levels of chemical residues present in the soils and water of the Port Quendall property. The purpose of this information is to guide the development of remedial actions for the property.

SOILS

As discussed in Section 2.0, 124 soil samples from the Port Quendall property were screened for PAH concentrations by an absorbance technique. This technique provided a cost-effective method for determining semi-quantitative PAH levels in a large number of samples. Table 4 provides a quality assurance comparison of six soil samples simultaneously analyzed for PAHs by the absorption technique and the DOE gravimetric method. The PAH concentrations determined by the absorption and DOE methods agreed within a factor of three for four of the six samples and within a factor of 30 for the remaining two samples. Agreement within a factor of three is considered good when the relatively low concentrations of PAHs, nonspecificity of the absorbance screen (i.e., does not exclude 2- and 3-ring compounds which are not considered in the DOE definition of PAHs), and potential uncertainties in the screen concentrations are taken into account. The agreement between the methods for the one sample with greater than 0.1 percent PAH was particularly good. The PAH concentrations of three samples determined by GC/MS scans (Table 4) are much lower .,

. . .

than the results of the other two methods. This could be indicative of the uncertainties of quantitative analyses by GC/MS without analyzing standards for the compounds of specific concern.

Table 5 lists the results of the absorbance screen for PAHs and Figure 8 presents a spatial plot of these data. The highest concentration of PAHs was 4.8 percent (weight percent as benzo(a)pyrene), found at a depth of 4.5 to 6 feet in borehole BH-1. This borehole is located on the northern end of the property. Polycyclic aromatic hydrocarbons at concentrations equal to or greater than one percent were present in some samples from all of the borings and trenches except in the southeastern (boreholes BH-10, BH-11, BH-12, BH-14, and BH-15) and extreme western (borehole BH-2 and trench T-2) portions of the property. Soils with a PAH concentration of one percent (when more than 400 pounds of material are present) are defined as "extremely hazardous waste" by the DOE.

It is possible that significant near-surface concentrations of PAHs could be present in borehole BH-10. A soil sample taken from 0 to 1.5 feet in this hole had a PAH concentration of 0.63 percent. The actual concentration could be higher because of analytical uncertainty or a heterogeneous occurrence of PAHs in this zone. Additional samples from trench T-2 could also reveal significant PAH concentrations since one of the two samples collected from the trench has a concentration of 0.50 percent.

Tables 6 and 7 show non-PAH priority pollutants and other compounds detected in the soil samples. Based on GC/MS scans, aromatic hydrocarbons with two and three aromatic rings were present at levels of approximately 100 to 2000 mg/kg (ppm) in composite soil samples from boreholes BH-7 and BH-9 (Table 6). It should be noted that two and three aromatic-ring hydrocarbons are not considered in the DOE definition of PAHs because of their lower toxicity relative to higher ring compounds.

The detected two-ring compounds were napthalene, 2-methylnapthalene, acenapthene, acenapthylene, anthracene, and fluorene. The detected three-ring compounds were fluoranthene and phenanthrene. Napthalene was the compound present at the highest level in the samples, with concentrations of 1139 ppm (0.11 percent) and 2168 ppm (0.22 percent) in samples from BH-7 and BH-9, respectively. These concentrations should be regarded as only semi-quantitative since standards for the specific two-and three-ring compounds were not run with the samples.

Volatile organics were detected by GC/MS scan in the ppm concentration range in the composite soil samples from BH-7 and BH-9 (Table 6). This level of volatile organics was also present in the sample from the 12.9 to 14.4-foot interval of BH-9 (Table 7). The volatile organics detected in the samples included aromatic compounds (benzene, toluene, xylene, methylbenzene/styrene, and ethylbenzene) and one halogenated aliphatic compound (methylene chloride).

Other non-PAH compounds detected in the soil samples include:

- acid-extractable phenolic compounds at the ppm level (the priority pollutant 2,4-dimethylphenol and two non-priority compounds)
- base-neutral extractable non-priority compound at the ppm level (dibenzofuran)
- pesticides at the part-per-billion (ppb) level (aldrin, lindane, and possibly heptachlor epoxide).

Other tentatively identified compounds from the GC/MS scan of the composite soil samples are included in Appendix D.

A STATE OF

Except for halogenated organics, the DOE hazardous waste criteria do not specifically address non-PAH compounds. Criteria for definition of a "dangerous waste" or "extremely dangerous waste" exist that are based on total equivalent concentrations and quantities of mixtures of chemicals based on their carcinogenic and toxic properties. Wastes exceeding 400 pounds that contain halogenated hydrocarbon concentrations of 0.01 to 1.0 percent are considered to be a "dangerous waste" by the state. Composite soil samples from BH-7 and BH-9 have only 0.002 and 0.004 percent, respectively, of halogenated organics (methylene chloride).

It does not appear that the field exploration program reached the bottom of contamination on the Port Quendall property. Levels of PAH approaching one percent were found at the 21.6 to 23-foot interval of borehole BH-5. Twelker (1971) found hydrocarbon odor near the bottom of holes drilled to a depth of approximately 60 feet, although this could have easily been the result of contamination carried down from much higher horizons.

WATER

Based on an analysis of inorganic constituents (Appendix D), the groundwater on the property is fresh (i.e., low dissolved solids) and varies in hardness from moderately hard (61 to 120 mg/l of CaCO₃) to very hard (more than 180 mg/l of CaCO₃). The pH of water varies from slightly acidic (6.1) to slightly alkaline (7.8).

Table 8 lists the results of the organic analyses of the water samples and Figure 8 provides a spatial plot of these data. Polycyclic aromatic hydrocarbons were present in all 12 groundwater samples from the property, ranging in concentration from 6 ug/1 to 23 mg/1.

The DOE uses water quality criteria recommended by the U.S. Environmental Protection Agency (EPA) in the November 28, 1980 Federal Register for their evaluation of potential priority pollutants in water (personal communication, G. Brugger, DOE, August, 1983). The EPA does not have recommended limits for PAHs, although toxicity and risk-level data are presented.

Polycyclic aromatic hydrocarbon concentrations greater than 1 mg/l were present in water samples from wells BH-5, BH-5A, BH-8A, BH-8A, and BH-2A. With the exception of water samples from wells BH-2A and BH-12A, groundwater containing more than 100 ug/l of PAHs occurred in wells where soil samples had more than one percent PAHs. In wells where soil samples were found to have less than one percent PAHs, the corresponding water samples contained less than 100 ug/l of these compounds (Figure 8). In general, PAH concentrations were higher in shallow groundwater than in deeper groundwater samples.

The PAH concentration in the water sample from well BH-2A (2.64 mg/l) appears to be anomalously high. Soil from boring BH-2 had very low PAH concentrations and water from well BH-2, which is adjacent to well BH-2A and screened at the same depth interval, had a PAH concentration of only 5.7 ug/l. The anomalously high value could possibly be the result of cross-contamination during sampling.

The PAH concentration in the water from BH-12A (745 ug/1) appears to be high relative to the low soil PAH concentrations in the boring (0.004 percent maximum). The high PAH concentration in the water could be due to migration of these compounds from up-gradient sources along the old May Creek channel. The high concentration could also be a result of cross-contamination during sampling.

Volatile aromatic hydrocarbons were present at detectable concentrations in 8 of the 12 groundwater samples. Benzene, toluene, and xylene (BTX) concentrations ranged from several ug/1 to approximately 17 mg/l. The concentrations of each of these compounds were generally equal to or greater than 1 mg/l in samples from wells BH-5, BH-5A, BH-8, and BH-8A. It should be noted that boreholes BH-5 and BH-8 had the highest soil PAH concentrations. It is possible that the high PAH values were observed as a result of their extraction from soil by the BTX solution. The absence of detectable volatile organics in the water sample from BH-2A is further evidence that the high PAH reading for the sample is anomalous.

Four of the groundwater samples were analyzed for pentachlorophenol. Only the sample from BH-8 contained a detectable concentration of this compound (86 ug/1). No concentration limits for aromatic hydrocarbons or pentachlorophenol have been promulgated by the EPA for freshwater aquatic life or human health, although toxicity and risk-level data have been presented in the Federal Register.

- Bretz, J.H., 1913. Glaciation of the Puget Sound Region: Washington Geological Survey Bulletin No. 8, 244 p.
- CH₂M-Hill, 1977. A Review of Water Quality Data for the Port Quendall Environmental Assessment, Bellevue, Washington: 6 p.
- CH₂M-Hill, 1978. Preliminary Geotechnical Investigation/Port Quendall Development, Renton, Washington: 55 p.
- CH_M-Hill, 1981. Port Quendall Master Plan: 31 p.
- Liesch, B.A., Price, C.E., and Walters, K.L., 1963. Geology and Ground-Water Resources of Northwestern King County, Washington: Water Supply Bulletin No. 20, Division of Water Resources, Olympia, Washington, 241 p.
- Mullineaux, D.R., 1961. Geology of the Renton, Auburn, and Black Diamond Quadrangles, Washington: University of Washington Doctor of Philosophy, 202 p.
- Mullineaux, D.R., 1970. Geology of the Renton, Auburn, and Black Diamond Quadrangles, King County Washington: Geological Survey Professional Paper 672, Washington, D.C., 92 p.
- Twelker, N.H., 1971. Subsurface Exploration Geologic Sections and Site Plan, Quendall Terminals: 6 figures.
- Waldron, H.H., Mullineaux, D.R., and Crandell, D.R., 1957. Age of the Vashon glaciation in the southern and central parts of the Puget Sound basin, Washington: Geological Society of America Bulletin, Vol. 68, No. 12, pps. 1849-1850.
- Waldron, H.H., Liesch, B.A., Mullineaux, D.R., and Crandell, D.R., 1962. Preliminary Geologic Map of Seattle and Vicinity, Washington: Miscellaneous Geologic Investigations Map I-354, U.S. Geological Survey, Washington, D.C.

Table 1. MONITORING WELL INSTALLATIONS

Well	Total Depth (ft)	Ground Elev. (ft)	M.P. Elev (ft)	Dia. (in)	Material	Monitored Interval (ft)	North Coordinate	East Coordinate
BH-I	19.5	23.4	23.42	2	PVC	5-19.5	197,782	1,662,516
BH-2	19.5	20.8	25.47	2	PVC	5-19.5	197,633	1,662,767
BH-2A	20.0	20.8	25.06	4	Stainless	5-20.0	197,630	1,662,762
BH-5	32.0	32.3	25.64	4	PVC	13-23.0	197,473	1,662,136
BH-5A	10.0	23.3	24.38	4	PVC	5-10.0	197,406	1,662,136
BH-6	19.5	20.0	21.85	4	PVC	8-18.0	197,406	1,662,227
BH-8	24.5	23.4	25.12	4	PVC	13-23.0	197,342	1,662,426
BH-8A	10.0	23.4	23.64	4	PVC	5-10.0	197.336	1,662,426
BH-10	19.5	21.5	22.50	4	PVC	5-19.5	197,331	1,662,981
BH-12	23.0	21.9	24.39	4	PVC	13-23.0	197, 106	1,662,862
BH-12A	10.0	21.9	21.41	4	PVC	5-10.0	197,106	1,661,855
BH-15	19.5	21.9	21.70	2	PVC	5-19.5	196,970	1,661,914

Note: Parentheses with coordinates indicates survey by WCC personnel. All other survey data obtained by Ken J. Oyler, CE & LS #5524.

^a M.P. denotes measuring point at top of installed casing used for various hydrologic measurements.

Table 2. ANALYTICAL METHODS USED FOR THE ANALYSIS OF SOIL AND WATER SAMPLES

Parameter	Number of Samples	Method
SOIL		
PAH ^b Screen	124	Absorbance of extract
Total Soil PAHs	6	Appendix G of 173-303 WAC (3/82)
Volatile Organic Screen	6	EMSL-LV ^d No. 1 (11/10/81)
Priority Pollutants	<pre>2 Composites (all fractions), 3 sam- ples (base-neutral extract only)</pre>	
WATER		
PAHs Volatile Aromatics Pentachlorophenol pH Total Alkalinity Conductivity Sodium Calcium Magnesium Potassium Chloride Sulfate Nitrate-Nitrite Total Phenols	12 12 4 12 12 12 12 12 12 12 12 12 12 12	Appendix G of 173-303 WAC, 3/82 EPA Method 602 Sep-Pak Method RPA Method 150.1 EPA Method 310.2 EPA Method 273.1 EPA Method 273.1 EPA Method 242.1 EPA Method 258.1 EPA Method 325.1 EPA Method 375.4 EPA Method 375.4 EPA Method 420.1

a Boring and trench soil samples.

b Polycyclic aromatic hydrocarbons.

c Washington State Administrative Code.

d U.S. EPA Environmental Measurement System Lab. - Las Vegas.

Table 3. CHARACTERISTICS OF GROUNDWATER MOVEMENT ON THE PORT QUENDALL PROPERTY

Well Number	Transmissibility gpd/ft	Estimated Velocity, ft/yr	H/day
BH-2A	104	7.3	0.02
BH-6	453	58.4	0.16
Вн-8	76	7.3	0.01
BH-10	250	18.3	0.05
BH-15	484	32.9	0.09

Table 4. CROSS-COMPARISON OF PAH CONCENTRATIONS DETERMINED BY DIFFERENT METHODS

	Sample (Concentration % by weight)						
Method 	BH-2/D-2	BH-4/D-4	BH-6/D-4	BH-9/D-7	BH-10/D-5	BH-11/0-8	BH-7 Comp.
Absorbance							
Screen 8	0.002	0.44	0.01	0.03	0.002	0.01	0.74-0.97
DOE Method	0.057	0.46	0.03	0.06	0.064	0.02	-
GC/MS (2 or 3							
aromatic rings)		0.031	_			0.0005	0.27 ^b
(more than 3							
aromatic rings)		0.015	****			0.0006	0.07 ^b

a Concentration in terms of percentage as benzo(a)pyrene.

Note: Refer to Table 2 for analytical methods.

 $^{^{\}rm b}$ Based on both readily identifiable compounds and tentatively identified compounds.

Table 5. ANALYTICAL RESULTS FOR POLYCYCLIC AROMATIC HYDROCARBON (PAH)

SCREENING OF SOIL SAMPLES FROM THE QUENDALL PROPERTY a

Boring	Sample	Location b	Depth (feet)	PAH Concentration
Boring S	amples			
BH-1	D-1		0-1.5	0.002
	D-2		3-4.5	0.93
	D-3		4.5-6	4.8 -
	D-4		6-7.5	L/0.002
	D-5		7.5-9	0.001
	D-6		12.9-14.4	0.004
	D-7		18-19.5	0.009
вн-2	D-1		0-1.5	L/0.001
	D-2		3-4.5	0.002
	D-3		4.5-6	0.003
	D-4		6-7.5	L/0.001.
	D-5		7.5-9	L/0.001
	D-6		12.9-14.4	0.001
	D-7		18-19.5	L/0.001
3H-4	D-1		0-1.5	L/0.001
	D-2		4.5-6	0.002
	D-3		9-10.5	0.056
	D-4		10.5-12.0	0.44
	D-5		12.9-14.4	3.4 *
	D-6		18-19.5	0.75
	D-7		21.7-23.2	0.041
3H-5	D-1		0-1.5	0.73
	D-2		1.5-3	1.0
	D-3		3-4.5	0.90
	D-4		4.5-6	0.89
	D-5		6-7.5	0.89
	D-6		7.5-9	0.006
	D-7		12.9-14.4	0.006
	D-8		18-19.5	1.9、
	D-9		21.6-23.1	0.71
H-6	D-1		3-4.5	1.0
	D-2		4.5-6	0:023
	D-3		6-7.5	0.94
	D-4		7.5–9	0.01
	D-5		12.9-14.4	0.002
	D-6		18-19.0	0.001

Table 5. ANALYTICAL RESULTS FOR POLYCYCLIC AROMATIC HYDROCARBON (PAH)

SCREENING OF SOIL SAMPLES FROM THE QUENDALL PROPERTY a (continued)

Boring	Sample	Location	Depth (feet)	PAH Concentration
BH-7	D-1		3-4.5	0.91
	D-2		4.5-6	0.081
	D-3		6-7.5	0.74
	D-4		7.5-9	0.97
	D-5		9-10.5	0.88
	D-6		12.9-14.4	0.001
	D-7		18-19.0	0.008
BH-8	D-1		0-1.5	0.86
	D-2		1.5-3	0.054
	D-3		3-4.5	0.013
	D-4		4.5-6	0.94
	D-5		6-7.5	1.2
	D-6		7.5-9	1.1
	D-7		12.9-14.4	1.8
	D-8		18-19.5	1.3
	D-9		23-24.5	0.042
BH-9	D-1		0-1.5	0.005
	D-2		1.5-3	1.7
	D-3		3-4.5	2.2
	D-4		6-7.5	1.3
	D-5		7.5-9	0.014
	D-6		9-10.5	1.0
	D-7		12.9-14.4	0.03
	D-8		18-19.5	L/0.001
BH-10	D-1		0-1.5	0.63
	D-2		1.5-3	0.009
	D-3		3-4.5	0.002
	D-4		4.5-6	0.002
	D-5		6-7.5	0.002
	D-6		12.9-14.4	L/0.001
	D-7		18-19.5	L/0.001
BH-11	D-1		0-1.5	0.007
	D-2		1.5-3	0.017
	D-3		3-4.5	0.002
	D-4		4.5-6	0.002
	D-5		6-7.5	0.003
	D-6 ·		7.5-9	0.003
	D-7		12.9-14.4	L/0.001
	D-8		18-19.5	0.01

Table 5. ANALYTICAL RESULTS FOR POLYCYCLIC AROMATIC HYDROCARBON (PAH)

SCREENING OF SOIL SAMPLES FROM THE QUENDALL PROPERTY (continued)

Boring	Sample	Location	Depth (feet)	PAH Concentration
BH-12	D-1		1.5-3	0.004
	D-2		3-4.5	L/0.001
	D-3		4.5-6	0.001
	D-4		6-7.5	0.003
	D-5		12.9-14.4	0.001
	D6		18-19.5	0.003
	D-7		21.9-23.4	L/0.001
BH-14	D-1		0-1.5	0.022
	D-2		3-4.5	0.007
	D-3		4.5-6	0.007
	D-4		6-7.5	L/0.001
	D-5		7.5-9	0.009
	D-6		12.9-14.4	L/0.001
	D-7		18-19.5	L/0.001
BH-15	D-1		0-1.5	0.004
	D-2		3-4.5	0.008
	D-3		4.5-6	0.002
	D-4		6-7.5	L/0.001
	D-5		7.5- 9	L/0.001
	D-6		12.9-14.4	0.002
	D-7		18-19.5	0.001
BH-16	D-1		0-1.5	0.004
	D-2		1.9-3.4	1.1
	D-3		3.4-4.9	0.001
	D-4		4.9-6.4	L/0.001
	D-5		6.4-7.9	ď
	D-6		7.9-9.4	L/0.001
	D-7		9.4-10.9	L/0.001
	D-8		12.9-14.4	L/0.001
	D-9		18-19.5	L/0.001
Trench S	<u>amples</u>			
T-1	1	39.1	2.5	0.67
	2	39.1	3.8	0.73
	3	39.1	5.0	0.008
	4	31.9	4.4	0.37
	5	47.8	3.1	1.3.

Table 5. ANALYTICAL RESULTS FOR POLYCYCLIC AROMATIC HYDROCARBON (PAH)

SCREENING OF SOIL SAMPLES FROM THE QUENDALL PROPERTY a (concluded)

Boring	Sample	Location b	Depth (feet)	PAH Concentration
T-1 (cont	·.) 6	20.0	5.6	0.002
	7	46.9	5.6	L/0.001
	8	39.1	1.3	L/0.001
T-2	1	7.5	2.0	0.002
	2	6.3	3.75	0.50
T-3	1	19.7	3.75	0.32
	1 2	19.7	5.3	0.84
	3	19.7	7.5	1.0
	4	30.6	5.9	1.2
T-4	1	100.6	4.7	1.9
	2	100.6	6.6	0.43
	3	100.6	8.1	0.080
	4	51.0	3.1	0.28
	5	51.0	5	0.48
	6	51.0	6.9	1.7

Screening by measurement of absorbance of extract and comparison to benzo(a)pyrene standards.

b Feet from southern end of trench.

[%] PAH by weight of soil as benzo(a)pyrene; L/# = Below detection level
 of #.

d Sample not analyzed.

Table 6. CONCENTRATIONS OF TOTAL PAHS AND SELECTED NON-PAH COMPOUNDS DETECTED IN GC/MS SCANS OF EXTRACTS OBTAINED FROM TWO SOIL COMPOSITES a

		Concentr	ation (ppb)
Extract	Compound	BH-7 Comp	BH-9 Comp
Acid	2,4-Dimethylphenol	27,500	L/4,000
	2,4-Dimethylphenol 2-Methylphenol	15,700	7,800
	4-Methylphenol	30,400	L/2,000
Base/Neutral	Total PAH Compounds (>3 rings)	650,600	1,204,400
	Acenapthene b	159,300	515,000
	Fluoranthene b	166,800	368,000
	Napthalene b	1,139,000	2,168,000
	Acenapthylene	71,500	185,000
	Anthracene	74,400	258,000
	Fluorene	96,500	279,000
	Phenanthrene ^b	304,300	1,061,000
	Dibenzofuran	72,900	139,000
	2-Methylnapthalene	265,000	1,083,000
V olatile	Benzene	1,130	2,300
	Ethylbenzene b	27,000	34,600
	Methylene Chloride	19,300	36,700
	Toluene ^b	10,150	12,000
	O-Xylene	58,400	56,900
Pesticides	Aldrin	7	130
	Heptachlor Epoxide b,d	L/100	50
	Lindane b	L/100	180

Only priority pollutants and readily identifiable non-priority pollutants are listed. Other tentatively-identified compounds are listed in Appendix D. Two and three ring aromatic compounds (which are not considered to be PAHs by the Washington State DOE) are listed.

Priority pollutants.

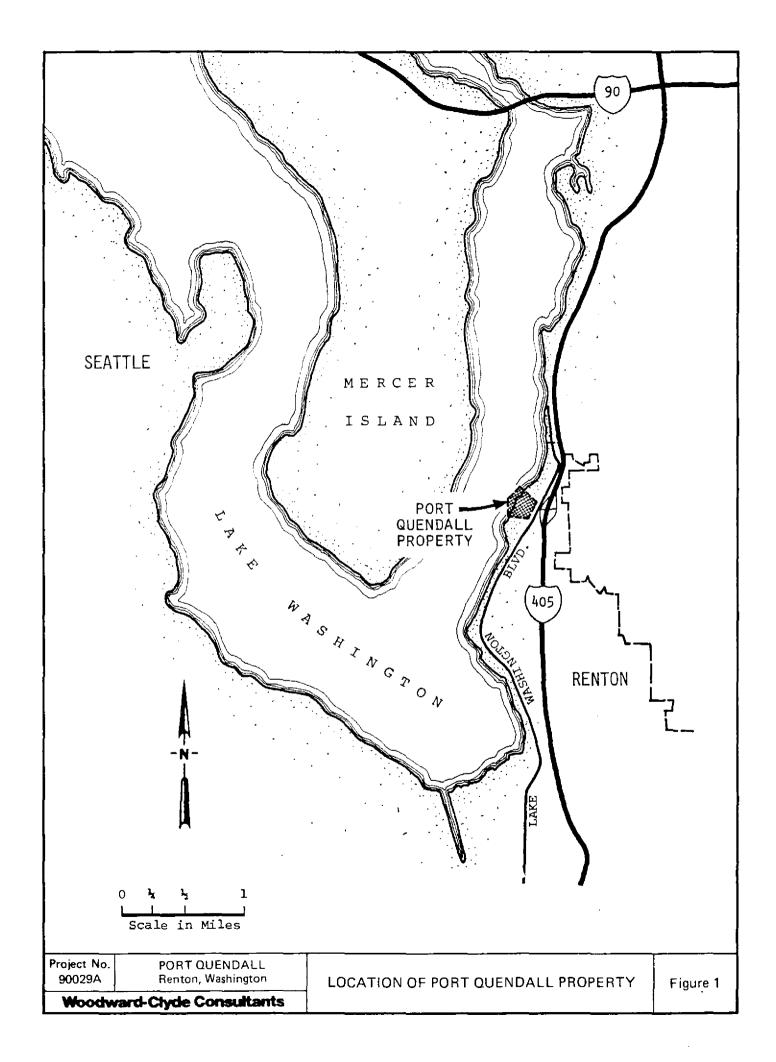
c Includes only readily identifiable compounds.

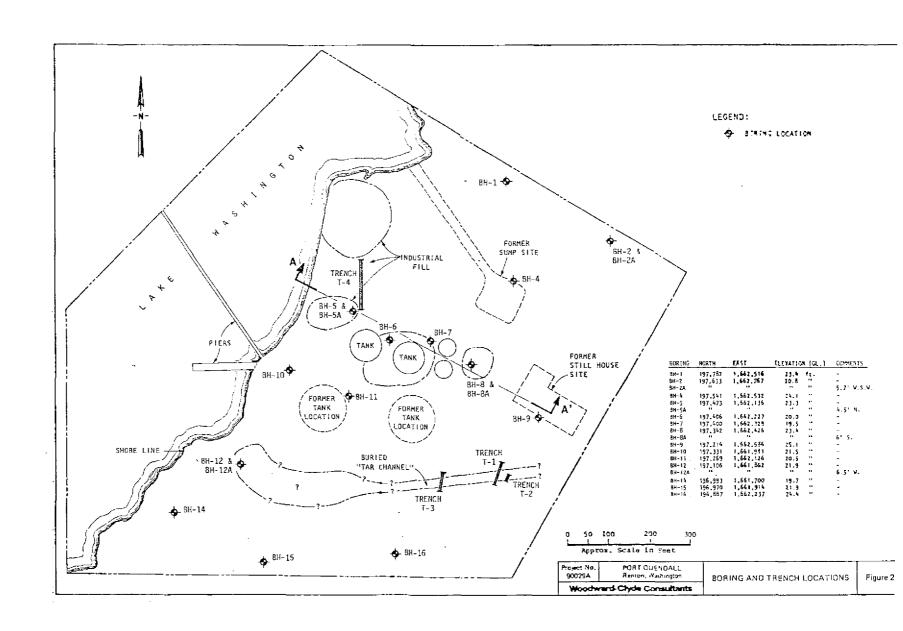
d Possible positive matrix interference.

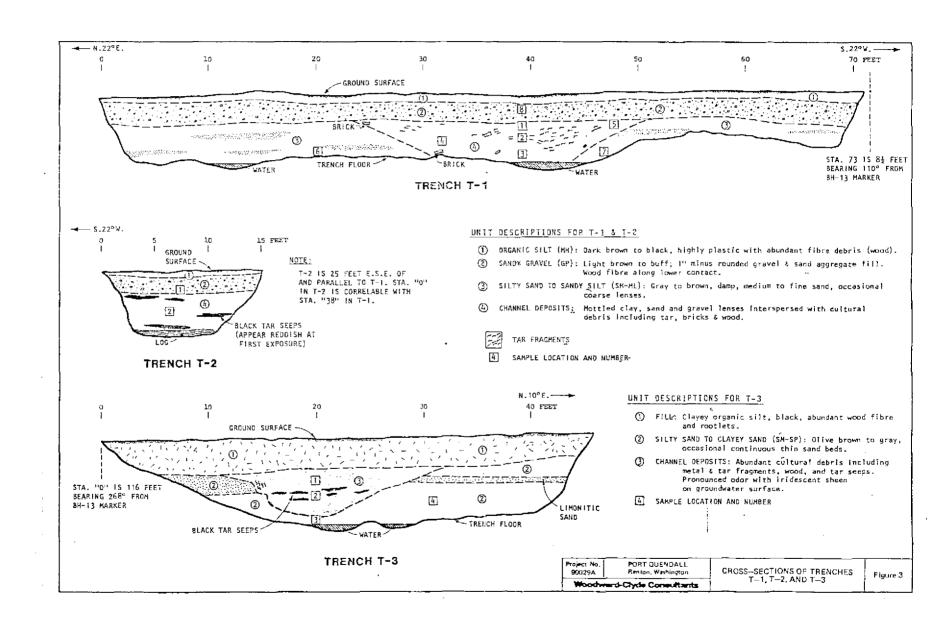
Table 7. RESULTS OF THE SCAN FOR VOLATILE ORGANIC COMPOUNDS IN THE SOIL SAMPLES

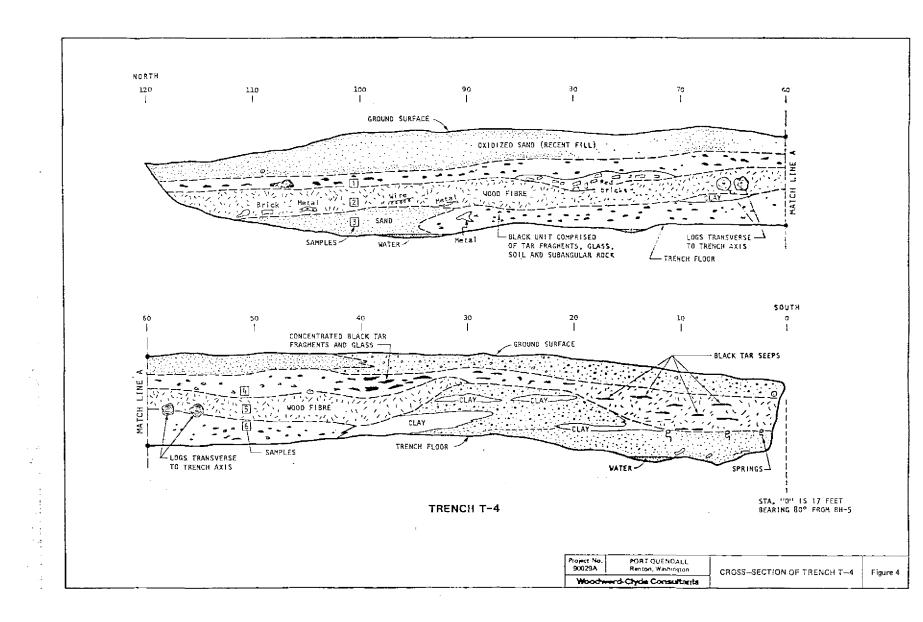
				ple		
Compound	BH-2/D-2	BH-4/D-4	BH-6/D-4	BH-9/D-7	BH-10/D-5	BH-11/D-8
Benzene	L/0.2	0.3	L/0.2	2.1	L/0.2	L/0.2
Toluene	L/0.2	L/0.2	L/0.2	5.2	L/0.2	L/0.2
Xylene	L/0.4	L/0.4	L/0.4	7.3	L/0.4	L/0.4
Methyl- benzene & Styrene	L/0.4	L/0.4	L/0.4	4.3	L/0.4	L/0.4

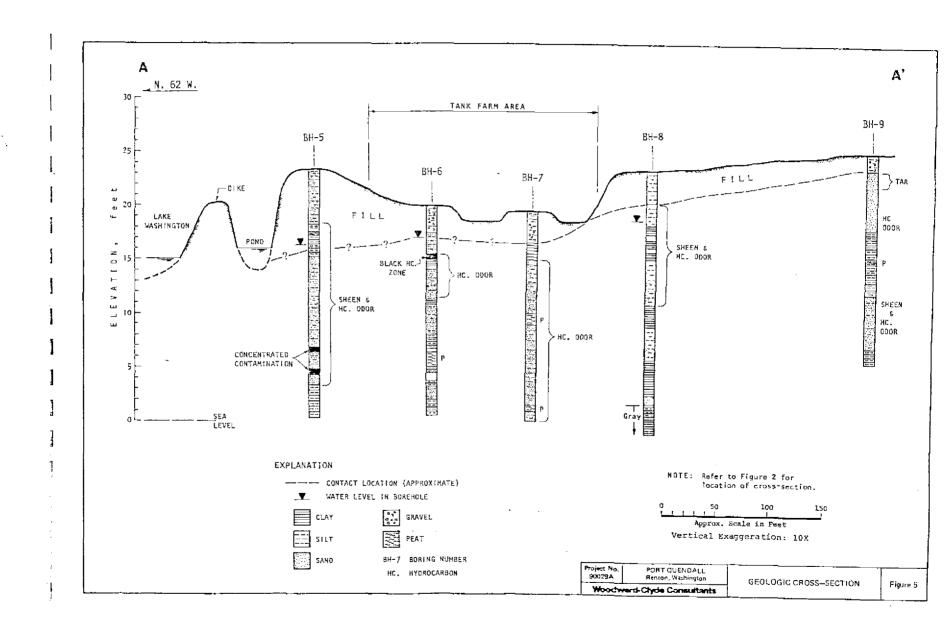
a Concentration in units of ppm; L/# = Below the detection level of #.

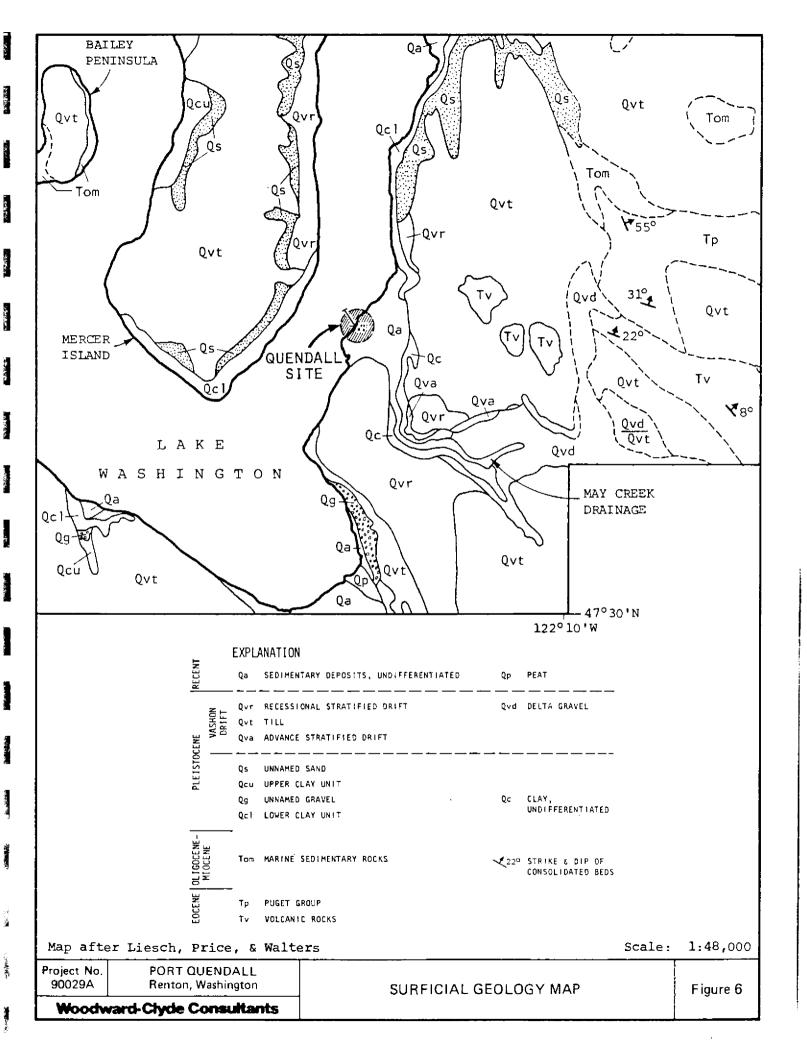

Parameter	BH1	BH2	BH2A	BH5	BH5A	ВНб	ВН8	BH8A	BH10	BH12	BH12A	BH15
rarameter	БПІ	Bnz	DUSY		BUN	Впо	DNO	БПОА	БПІО	DUIZ	DUIZK	DUIJ
Depth Screened (feet)	5-19.5	5-19.5	5-20.0	13-23	5-10	8-18	13-23	5-10	5-19.5	13-23	5–10	5-19.5
PAH ^C	115	5.7	2640	4240	5210	930	1839	22,700	12.8	6.8	745	10.4
Benzene	L/1.0	L/1.0	L.1.0	17,000	980	94	7,000	14,000	24.0	L/1.0	L/1.0	L/1.0
Toluene	L/1.0	L/1.0	L/1.0	17,000	640	39	4,100	9,200	L/1.0	L/1.0	L/1.0	L/1.0
Xylene	2.1	L/1.0	L/1.0	17,000	490	150	5,200	4,600	5.0	L/1.0	L/1.0	6.0
Penta- chloro- phenol	L/10	L/10	L/10				86					

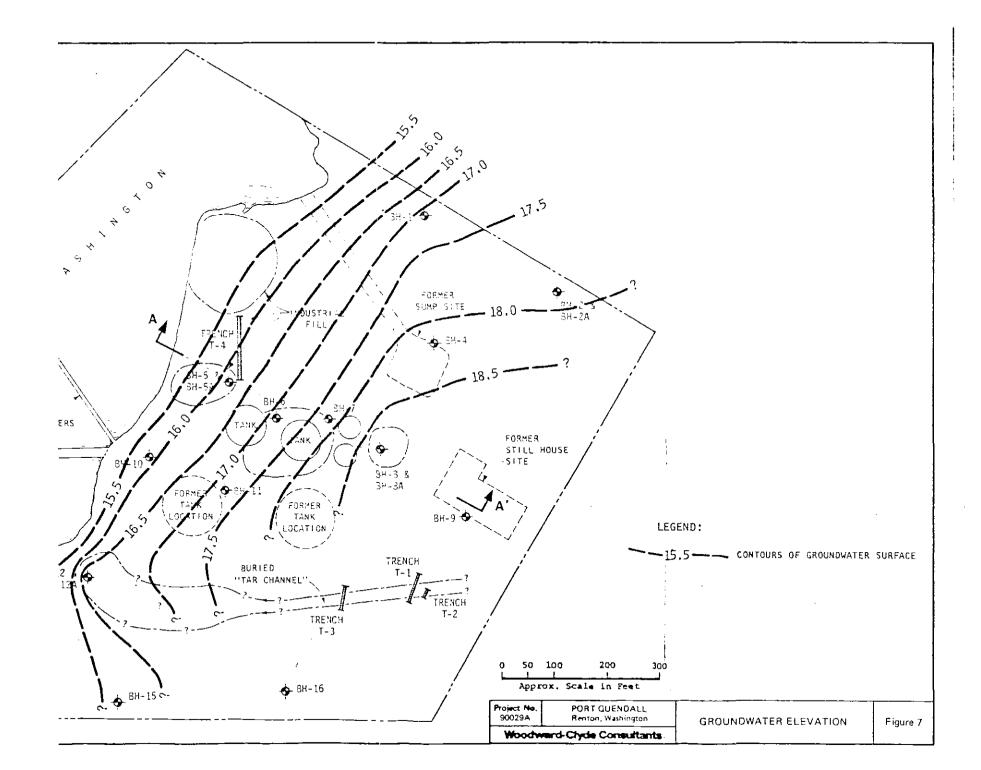

a
L/# = Below detection level of #.

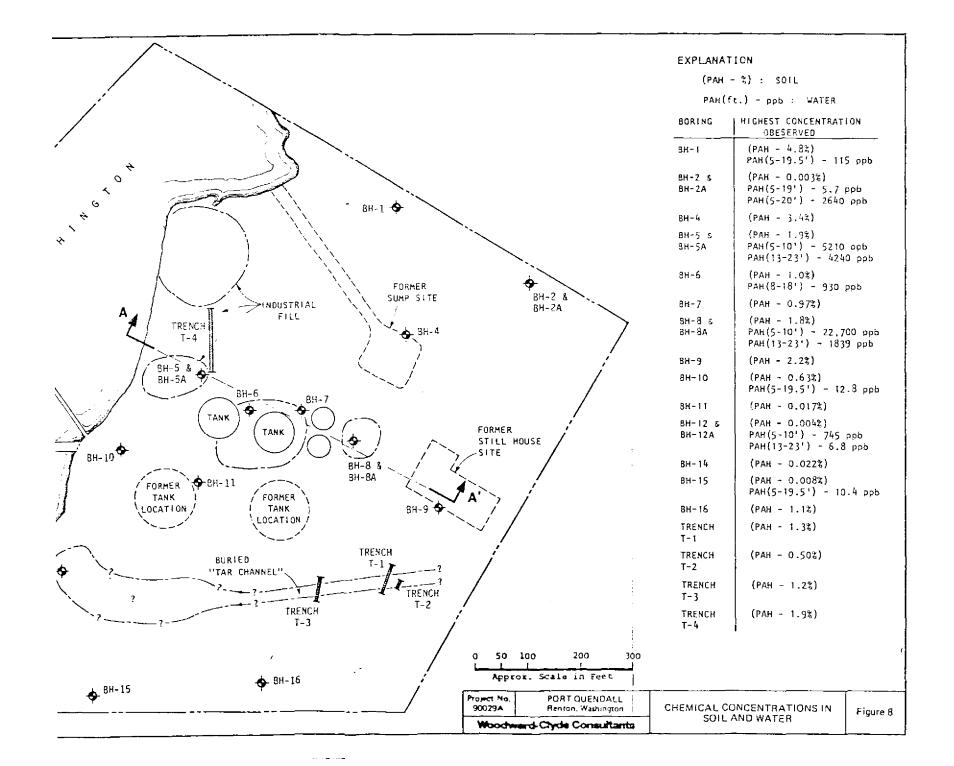

Note: Refer to Table 2 for analytical method.


b
The sample name reflect the well from which the sample was collected.


 $^{^{\}rm c}$ $\mu{\rm g}/{\rm L}$ as benzo(a)pyrene, corrected for napthalene; by Washington State Dept. of Ecology Method.







APPENDIX A
BORING AND WATER WELL LOGS

Proj	ject	:		RT QUENDALL on, Washington	Log	o f	Boring	1	Vo.		1	
Date			611 11	7, 1983	Remarks:							
Type Hamn		oring: Jeight		llow Stem Auger		<u> </u>						— —
±.		Jeigin.	<u></u>					T	>			
Depth, F	Samples	Blows/Ft.	PAH concentration (%)	MATERIAL D	ESCRIPTIO	N			LITHOLOGY	<u>.</u> :	WELL DETAIL	
			1	Surface Elevation: 23.4	·			\ \ \				
	1		0.002	FILL Woodchips and Ag	gregate —				00 0		-	
				SANDY SILT (ML)				-		blank		
		-		Olive-gray, occa			enses,	-				
-	2	56	0.93					- -		PVC		
5—	3	24	4.8	Becomes less s	andy			_	 	d. I.D		
-		 					İ	- -		2-inch		
	4	8	0.002	\mathbb{Z} Water \mathbb{Z} With some orga	nic debris					2.		
-	5	14	0.001	1 -				- 12 CG				
-		4		SILTY SAND (SM) Medium to fine,	20% silt, f	reque	ent	٦ -	 			
10-		1		peat lenses, som				\dashv			\equiv	
								- 1. - 1.	 			
				> Peat lens				2				
										tted		
-		Π						-		Slott		
-	6	27	0.004	Peat lens				1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PVC		
15-		7		_			}	_			\equiv	
										l.D.		
]							į			2-inch		
										2- i	\equiv	
-		П			·			-	_ :-			
-	7	25	0.009	Peat lens				1	~~~ ~~~			
20 —				BOTTOM OF BOR	UNC @ 10 E1			-				
				DOTTON OF DON	עיכו ש טאוו.				1			
									!			
		İ						7				
_								1		_		
Proj.	No.	900	29A	Woodward-C	lyde Consul	tants			Арр	endi	x	A-1

*

182.5

2000

14.05%

See .

1000

1

2

4

Project: PORT QUENDALL Log of Boring No. Renton, Washington May 17, 1983 Remarks: ____ Date Drilled: __ 4" Hollow Stem Auger Type of Boring: Hammer Weight: PAH concentration (%) Blows/Ft. LITHOLOGY Samples WELL DETAIL Depth, MATERIAL DESCRIPTION Surface Elevation: 20.8 FILL 52 < Silt, Gravel and black -₀= organic debris blank SILTY SAND (SM) Olive-gray, damp, occasional 2 0.002 33 lenticular gravels and peat interbeds 2-inch I.D. 0.003 Water 3 8 ∇ 44 4 < 27 5 < 10slotted } Peat 6 10 0.001 2-inch 1.D. PVC 15 34 < Peat 20-BOTTOM OF BORING @ 19.5' Proj. No. Appendix 90029A **Woodward-Clyde Consultants** A-2

Pro	ject	:		PORT QUENDALL nton, Washington	Log	of	Boring		No.	2	2A	
Date	Drille	e d :			Remarks:_							
		ring:	6" Ho	llow Stem Auger								
Hamn	ner W	eight:	<u>-</u>									
Depth, Ft.	Samples	Blows/Ft.	PAH concentration (%)	MATERIAL D	ESCRIPTIO	NC			LITHOLOGY	13/87	WELL DETAIL	
			· · · · · · · · · · · · · · · · · · ·	Surface Elevation:			-	\Box		,,,,		,,,,
10-				MONITORING WELL 2A No lithologic log or sampling Installation is monitoring well location 5.7 feet west-southwest of Boring 2	. "AS BUILT	C1 BI P1 44 S1 R S2	GRAM EMENT ENTONITE ELLETS -INCH I.D. TAINLESS ISER AND PACK -INCH I.D. LOTTED CREEN/ TAINLESS TEEL (304)					0000
20 -				BOTTOM OF B	ORING @ 20					CAP	=	
-						-						
Proj.	No.	9002	29A	Woodward-C	lyde Consu	ıltants	;		Арр	endix	\ _ <i>I</i>	4-3

in Sec.

1

and the second

Pro	ject	:		QUENDALL , Washington	Log	o f	Boring	No.	4
Date	Drill	e d :	May 18	3, 1983	Remarks:				
Туре	of Bo	ring:	4" HO	low Stem Auger					
	ner W	eight:							
Depth, Ft.	Samples	Blows/Ft	PAH concentration (%)	MATERIAL DI	ESCRIPTI	ON 	,	LITHOLOGY	WELL DETAIL
			т·	Surface Elevation:				000 0	
_	1	26	<	FILL Silt with aggreg	ate			000	V-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
5 —	2		0.002	SANDY SILT (ML) Dark brown, occa	sional pea	at len	ses		
-				Log FILL	*******				1-121-21
10-	3	2	0.056	CLAYEY SILT (MH) Black, medium-hi noticeable HC od			nt		3-1
-	4	18	0.44	sheen, some peat					te plug 0-23
15— -	5	4	3.4	Iridescent thro	oughout				Bentonite
-	6	7	0.75	CLAY (CH) Brown, with occa	sional pea	at len	ses		
20					·				75775
- -	7	2	0.041	BOTTOM OF BO	RING @ 23'				
Proj.	No.	900:	29A	Woodward-C	lyde Consi	ultants	<u> </u>	App	endix A-4

. •

Proj	ject	:		QUENDALL , Washington	Log	of	Boring	No.	5	
Date	Drill	e d :	May 20	, 1983	Remarks:					
				low Stem Auger						
		eight:								
Depth, Ft.	Samples	Blows/Ft.	PAH concentration (%)	MATERIAL DI	ESCRIPTI	ON		LITHOLOGY	WELL	DEIAIL
		· · · · ·	T	Surface Elevation:			··			
_	1	10	0.73	FILL Silty Sand (SM),						
1	2	10	1.0	some organic deb	ris/rootie	ets				
_	3	16	0.90						(sched 40)	
5 -	4	20	0.89	Water ▼ fibres, with no					- 1	
-	5	24	0.89	SILTY CLAY (CH-CL) Olive-gray, medi occasional black					PVC blank	
-	6	34	0.006	Occasional Black			Tragments		.o.	
10				SILTY SAND (SM) Gray, medium to HC odor and irid			tive	- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4-inch	
- - 15	7	29	0.006							
, 1 1	8	28	1.9	Noticeable HC sheen; some ra	odor and i pid corpor	rideso ation	cent). PVC slotted	
20-				CLAYEY SILT to SAN		,			-inch 1.D	
_	9	12	0.71	Brown, some odor BOTTOM OF BOR	·	. ,			-4	
- Proj.	No.	9002	29A	Woodward-Cl		ıltants		Арр	endix	A-5

Pro	ject	:		ORT QUENDALL iton, Washington	Log	o f	Boring		No.		5 <i>A</i>	
Date	Drille	e d :	May 2	20, 1983	Remarks:	<u>-</u>						
Туре		-		ollow Stem Auger					<u> </u>			
Hamn	ner W	eight:										
Depth, Ft.	Samples	Blows/Ft.	PAH concentration (%)	MATERIAL D	ESCRIPTI	ON			LITHOLOGY		WELL DETAIL	:
				Surface Elevation:								
				MONITORING WELL 5A	"AS BUIL	T'' DIA(GRAM	1	~			にいい
				No lithologic log or sampling			ENTONITE EAL	1	-			
-				Installation is a shallow monitoring 4.5 feet north of Boring 5	well		-INCH I.D. /C BLANK —	1 1			-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5 — -						SA	AND PACK	1				
-							INCH I.D. C SLOTTED-	I		•		
_				- - - -				-				
10-				BOTTOM OF BO	RING @ 10	1		1				
-							:	1				
15-							:	-			:	
								_				
1								1			:	
								_				
20—								1				
-								-				
Proj.	No.	9002	1 29A	Woodward-C	lyde Cons	ultants		Ч	App	endi:	<u> </u>	A-6

.

Pro	ject	:		「 QUENDALL a, Washington	Log	of	Boring	No.	6	-
Date	Drille	e d :	May 20	, 1983	Remarks:_					
Type	of Bo	ring:_	6" Hol	low Stem Auger						
Hamn	ner W	eight:				<u>-</u>				
Depth, Ft.	Samples	Blows/Ft.	PAH concentration (%)	MATERIAL D	ESCRIPTIO	ON		LITHOLOGY	WELL	DEIAIL
				Surface Elevation:] [
				FILL Silt and aggrega push for drill p				0000000	blank	
	1	6	1.0					J	PVC	
5 —	2	48	0.023	B∃ack HC zone,	distincti	ve odo	or		r.D.	
-	3	7	0.94	SILTY SAND (SM) Gray, medium to clay lenses, not			ia l	0000	4-inch	
	4	16	0.01							
10-					- .	_			tted	
15-	5	8	0.002	SILTY CLAY (CH-CL) Brown, occasiona		ises		 	PVC s10	
-				·					4-inch 1.D.	
_	6	3	0.001					== == ==	-	
20				BOTTOM OF BO	RING @ 19.	51				
Proj.	.No.	9002	29A		lyde Consu	ıltants		App	endix	A-7

y and y

Project: PORT QUENDALL Log of Boring No. Renton, Washington May 17, 1983 Remarks: ____ Date Drilled:__ 4" Hollow Stem Auger Type of Boring: _ Hammer Weight: PAH concentration (%) Blows/Ft. LITHOLOGY Samples WELL DETAIL Depth, MATERIAL DESCRIPTION Surface Elevation: FILL Silt with gravel, silt pushed for drill With gravel CLAY (CH) 11 0.91 Olive-gray, highly plastic, damp 2 2 0.081 SANDY SILT (ML) Dark gray, noticeable HC odor and iridescence 3 0.74 3 4 1.5 0.97 0.88 5 16 PEAT: With clay, brown, highly plastic, 10noticeable HC odor SILTY SAND (SM) Dark gray, medium to coarse, noticeable HC odor, occasional peat lenses 6 34 0.001 15-← Peat interbed 44 0.008 With HC odor 20-- BOTTOM OF BORING @ 19.5' Proj. No. 90029A Woodward-Clyde Consultants Appendix A-8

A true

前

Proj	ject	:		T QUENDALL n, Washington	Log o	f Borii	ng	No.	8	
Date), 1983 Now Stem Auger	Remarks:					
l ''		oring:_ /eight:		Tow Stell Auger						
Depth, Ft.	Samples	Blows/Ft.	PAH concentration (%)	MATERIAL DI	ESCRIPTION			THOLOGY	WELL	
		, ,	·	Surface Elevation:				5		
_	1	36	0.86	FILL Sandy Silt (ML),	dark brown,	damp	-			
	2	53	0.054							
	3		0.013	SILTY SAND (SM) Olive-gray, medi HC odor and irid			-		¥	
5 	4	19	0.94	CLAY (CH): Light g	ray, highly p	plastic			C blank	
_	5	44	1.2	SAND (SW): Black, CLAY (CH): Light g		sheen			.D. PVC	
_	6	30	1.1	CLAY (CH): Brown SILTY SAND (SM)					inch 1	
10-				Vater Gray, 30% silt, Water abundant brown for sheen					4	
-	7	12	1.8	SILTY CLAY (CH-CL) Light brown, hig organic debris (some		 	pe	
15— - -				SILTY SAND (SM) Brownish gray, 3	0% sand				. PVC slotted	
-	8	19	1.3	SILTY CLAY (CH-CL) Dark brown, occa	sional sand	lenses	-		4-inch 1.D.	
20 - 22 -	+ #	·		T Becomes gray			+ -		*	
24 -	9	27	0.042	BOTTOM OF BOR		-				
Proj.	No.	9002	29A	Woodward-Cl	lyde Consulta	ants		Appe	endix	A-9

Pro	ject	:		PORT QUENDALL aton, Washington	Log	of	Boring		No.	8	3 <i>A</i>	
Date	Drill	e d :	May 19), 1983	Remarks							
		ring:		low Stem Auger								
<u> </u>	ner W	eight:						=				
Depth, Ft.	Samples	Blows/Ft.	PAH concentration (%)	MATERIAL DI	ESCRIPTI	ON		i	LITHOLOGY	WELL	DETAIL	ļ
				Surface Elevation:								
_				MONITORING WELL 8A No lithologic log or sampling		В	GRAM					
- 5				Installation is sh monitoring well 6 feet south of Boring 8	allow		-INCH I.D. VC BLANK	- -		いたい	-	
_			<u> </u> 			S	AND PACK —			À		
							-INCH I.D. VC SLOTTED-					
10-							· · · · · · · · · · · · · · · · · · ·					
_				BOTTOM OF BO	RING @ 10	ı		_		CAP		
_								_				
15—												
-											1	
-												i
20-												
- Proj.	N'=			Woodward-C						pendix		

Proj	ec	t :			DRT QUENDALL ton, Washington	Log	o f	Boring		No.		9	
Date Type	of B	or	ing:_	411 Ho	6, 1983 llow Stem Auger	Remarks							
Hamn	ner V	۷e	ight:										
Depth, Ft.	Samples		Blows/Ft.	PAH concentration (%)	MATERIAL D	ESCRIPTI	ON			LITHOLOGY	L	WELL DETAIL	
					Surface Elevation:								
-	1			0.005	FILL Silt, with some	gravels			1	000			
-	2			1.7	TAR: Black, disti with occasional			s	1			775	
-	3			2.2	SAND: Black stain	with odor	-		-	M		7,7	
5—												77.75	
1	4.		10	1.3		· .						577	
_	5		4	0.014	CLAYEY SILT (MH) Olive-gray, damp odor	, soft, d	stinc	tive			19.5		
10-	6		9	1.0	_> Brown peat				_	 	plug 0-		
-					,					 	ntonite p	7/\	
_	., !		25	0.03	, .				_		-Bent	1	
15-	7		25	0.03	SILTY SAND (SM) Medium to fine, distinctive irid	escent she			_		•	(Y)	
<u> </u> 					and odor in sand				-			1-11	
	1	<u></u>				 .						717	
-	8		28	<	CLAYEY SILT (MH) Olive-gray, slig	ht odor			-			<u>72</u>	
20-					BOTTOM OF B	ORING @ 15	9.5		-				
	·								_				
- Proj.	No.		9002	29A	Woodward-C	lyde Consi	ultants	.	L -	Арр	endix	(A	-11

Pro	ject	:		RT QUENDALL on, Washington	Log	of	Boring	No.	10)
Date	Drille		May 18	3, 1983	L Remarks: _	- 				
Туре	of Bo	ring:	6" Ho1	low Stem Auger						
Hamn	ner W	eight:			_ <u></u>				<u> </u>	
Depth, Ft.	Samples	Blows/Ft.	PAH concentration (%)	MATERIAL DI	ESCRIPTIO	ON		LITHOLOGY	WELL	DEIAIL
				Surface Elevation:						
-	1	20	0.63	FILL Silty Sand (SM),						
_	2	28	0.009	10% silt, occasion debris and grave		iic			blank -	
_	3	19	0.002	Water				- 00	PVC	
5 —	4	22	0.002	Becomes gray, with slight HC	odor				.b.	
_	5	11	0.002	★					4-inch	
_									=	
10								0.		
_									Slotted	
_	6	9	<	CLAYEY SILT (MH) Brown, 20-30% cla	ay, highly	,		==	.D. PVC s	
15—				plastic, damp					4-inch 1.0	
_									4-11	
									巨	
_	7	15	<	SILTY SAND (SM)						
20 —					DODING O	0 5'		-		
] _				BOTTOM OF	DUKING @ I	3.5		1		
		-								
								7		
Proj.	No.	9002	29A	Woodward-Cl	yde Consu	ıltants		App	endix	A-12

To the second

Project: PORT QUENDALL of Boring No. 11 Log Renton, Washington May 18, 1983 Remarks:____ Date Drilled: Type of Boring: 4" Hollow Stem Auger Hammer Weight:_ PAH concentration (%) LITHOLOGY Ē Samples WELL DETAIL Blows/ Depth, MATERIAL DESCRIPTION Surface Elevation: FILL 0 0 14 0.007 1 Gravel and Sand 2 66 SANDY SILT (ML) 0.017 Dark brown, 20-40% sand, some clay, occasional lenticular gravels and 36 0.002 3 peat 4 0.002 -, Brown peat CLAYEY SILT (MH) 5 0.003 13 Gray, soft, dry, some organic debris, and peat interbeds 6 25 0.003 SILTY SAND (SM) Dark gray, 30% silt, no odor (occasional peat lenses) 10-→ Thin (0.2') peat lens 7 16 → Thin (0.2') peat lens < 15-► Thin (0.2') peat lens 8 27 0.01 20--BOTTOM OF BORING @ 19.5' Proj. No. Appendix A-13 90029A **Woodward-Clyde Consultants**

Lineal Chair

Proj	ect	:		ORT QUENDALL con, Washington	Log	o f	Borin	g.	No.	12	2
Date	Drille		May 17		Remarks:_	<u></u>		'			
Туре	of Bo	ring:_	4" Ho1	low Stem Auger							
Hamn	ner W								, T		
Depth, Ft.	Samples	Blows/Ft.	PAH concentration (%)	MATERIAL DI	ESCRIPTIO	ON			LITHOLOGY	WELL	DETAIL
<u> </u>		,	1	Surface Elevation:] _	·············	
	}			FILL: Silt, dark	brown						1
_	1	29	0.004	FILL: Silt, with o	rganics			- -			
-	2	20	<	SILTY SAND (SM) Gray, medium to gravel lenses, a				-		with seal	
5 —	3	53	0.001	Water Water	na organic			-	000	blank,	
	4	40	0.003					-	00000	. PVC	
-								-		inch 1.D	
10-										4-11	
-						<u> </u>	·	-		*	
	5	19	0.001	SANDY SILT / CLAYE Brown, damp, sof organic debris				-		h sand	<u>-</u> - -
15—	P			organic desiris						ed, with	_
										slotted	- - -
-	6	4	0.003	SILTY SAND (SM) Gray, 40% silt, debris	abundant o	rganic	:	-		1.D. PVC	-
20				SILTY CLAY (CH-CL)		_		-		-4-inch	-
	7	2	<	Brown, damp, med BOTTOM OF BO	ium to hig	hly pl	lastic	\ <u> </u>			
Proj.	No.	9002	1 29A	Woodward-C	lyde Consu	itants			App	endix	A-14

P Verbinal

and the

4

i.

100

Section Action

Project:	R	PORT QUENDALL enton, Washington		of Bo				
Date Drille	d:	ollow Stem Auger	Remarks					
Hammer We	eight:							
Depth, Ft. Samples	Blows/Ft. PAH concentration	MATERIAL DI	ESCRIPTI	ON		LITHOLOGY	WELL	•
		Surface Elevation:] =	N 21 17	.1.1
5—		MONITORING WELL 12. No lithologic log or sampling Installation is shallow monitoring 6.5 feet west of Boring 12		BENTON SEAL -	I.D.	-		クロンパンリングのことがある。
10	90029A	BOTTOM OF B				An	pendix A	-15

A. Carlo

S. C. Street

Project: PORT QUENDALL Log of Boring No. Renton, Washington May 18, 1983 __ Remarks:____ Date Drilled: __ 4" Hollow Stem Auger Type of Boring: Hammer Weight: PAH concentration (%) LITHOLOGY Samples Depth, MATERIAL DESCRIPTION Surface Elevation: 0.022 FILL Silt and Gravel Aggregate, slight odor, occasional pitch 0000 fragments and wood 000 0000 2 0.007 43 00 Pitch fragments Water 000 0.007 3 26 000 28 < SILTY SAND (SM) Dark gray, medium, saturated, occasional thin gravel interbeds 5 20 0.009 Grades to finer sand 10-Becomes fine sand 6 7 < 15. Coarse 24 7 < With clay, brown, highly plastic 20-- BOTTOM OF BORING @ 19.5' Proj. No. Appendix A-16 90029A **Woodward-Clyde Consultants**

A. 18 A. W. W. W. S. C.

Project: PORT QUENDALL Log of Boring No. Renton, Washington May 17, 1983 Remarks: ____ Date Drilled: _ 4" Hollow Stem Auger Type of Boring:_ Hammer Weight: PAH concentration (%) LITHOLOGY ŭ Samples WELL DETAIL Depth, MATERIAL DESCRIPTION Surface Elevation: FILL: Silt, dark brown 58 0.004 SAND (SW) Medium to fine, occasional gravel and clay lenses, slight HC odor bentonite 2 32 0.008 SANDY SILT (ML) Greenish gray, some clay (10-20%) 3 22 0.002 occasional organics/peat fragments with 4 44 < blank, SILTY SAND (SP-SM) 30% silt, medium to coarse sand, 5 43 < sand some HC odor throughout ×i.th 10slotted, 2-inch 6 19 0.002 PEAT: With clay, brown, highly plastic 15-SILTY SAND (SP-SM) Slight odor 7 9 0.001 20--BOTTOM OF BORING @ 19.5' Proj. No. 90029A **Woodward-Clyde Consultants** Appendix A-17

3.5

Proj	j e c 1	t :		T QUENDALL n, Washington	Log	of	Boring	No.	16	,
Date	Drill	ed:	May 16	, 1983	Remarks:		· ·			
Туре	of Bo	oring:	4" Hol	low Stem Auger						
Hamn	ner V	Veight								
Depth, Ft.	Samples	Blows/Ft.	PAH concentration (%)	MATERIAL DE	ESCRIPTION	ON		LITHOLOGY	WELL	
				Surface Elevation:						
_	1	79	0.004	FILL				<u> </u>		
-	2	54	1.1	SAND (SW) Medium, occasiona able HC odor and			s, notice-		1,777	
5 -	3	19	0.001	SAND (SP) Medium to coarse lenses, no stain	•	al gra	avel			
-	4	8	<	Water 						
-	5	32	<	CLAYEY SILT (MH) Olive-gray, medic organics, (brown					0-19.5	
_	6	19	<						plug 0	
10	7	32	<	Peat lens					Bentonite	
- - 15	8	29	<	_} Clayey silt le	ns				Ber	
-	9	18	<	SAND (SW) Dark gray, some	silt				グレバル	
		Ц		CLAY (CH): Stiff						
20 — - -				BOTTOM OF B	ORING @ 19).5'		-		
Proj.	No.	9002	29A	Woodward-C	lyde Const	ultants		Apr	pendix	A-18

Targett Spice

4

100

A Company of

1

企業

るとあた

* Salv

ΔP	DE.	ND:	TΥ	R

FIELD WATER SAMPLING AND WATER LEVEL DATA SHEETS

FIELD WATER SAMPLING DATA SHEET Port Quendall- Project 90029 A Don W. Spencer- Project Geologist

WELL	DATE	TIME	Volume of Discharge	DEPTH TO WATER	TEMP (°C)	рН	Cs	AMPLE #	REMARKS
BH-1	6-8-83	12:10	-	5.8		_	_		guely trutz
α	11	12:20	13.7		15	6.5	61 Zumhos		DUMPING
11	11	12:26	27,5		15	6.8	589 u	2	11 11
11	lı .	12:31	41.2		15	6.9	579 11	3	tı e.
11	11	12:36	5 <i>5</i>		15	6,9	549 11	4	11 11
į i	"	12:40:45		17.22		_	_		Stop Pump
11	и	12:45:30		6.74		_			Recovery
L!	11	12:48		6.52		_			11 11
"	1(12:50		6.40		_		_	11 11
11	11	12:54:10		6.31					11
"	11	12:59		6.22		_	_		u 4
11	11	13:02		6.15		_			BAILING BAILING
	11	13:46							SYIFING END HAND
			~						
					,				

FIELD WATER SAMPLING DATA SHEET Port Quendall- Project 90029 A Don W. Spencer- Project Geologist

WELL	DATE	TIÆ	VOLUME OF DISCHARGE	DEPTH TO WATER	TEMP (°C)	рΉ	Св	SAMPLE #	REMARKS
BH-2	6-8-83	12:13	-	7.4	-	_		<u> </u>	START PUMP
11 -	11	15:15	13.7		15	6.6	785 umhos		Pumpine
"	į (15:23:30	27.5	—	15	6.8	753 "	2	., "
ц	ţl	15:31:15	41.2		15	6.8	793 11	3	M II
Ц	II.	(5:38:30	<u>55</u>		15	6.7	725 11	4	۱۱ ۱۱
11	U	15:42:15		8.80			_		STOP PUMP
11	11	15:45		8.41		_	<u> </u>	_	Recovery
и	11	15:45:30		8.35	_	_			ц "
11	lı .	15:46		8,25		_	_		γl ti
u	11	15.47		8,11		_	_	_	и и
"	11	15:48		7.95	_	_	_		11 11
u	11	15:49		7.85		-			ļi 4
ı,	IL	16:03			15	6.9	710 "	5	BECIN HAND
11		16:30			15	6.9	669 "	6	Briting End Hund
				,					
	_				,				
	,								
						,			

FIELD WATER SAMPLING DATA SHEET Port Quendall- Project 90029 A Don W. Spencer- Project Geologist

M. C.

WELL	DATE	TIME	Volume of Discharge	DEPTH TO WATER	TEMP (°C)	рH	Cs	AMPLE	REMARKS
BH2 A	6-20-83	9:10		7.17	12.5	5.9	472cmhos	\	START PUMP
11	, (9;23	13.75	10.16	15	6.3	412 "	2	pomoine
, 1	į l	9:37	27,5	10.24	15	6.3	420 11	3	11 13
11	, l	7:55	41.25	10.25	15	5.3	438 '	4	u D
l i	11	10:12	£5 ,	10.26	15	6.0	447 "	7_	3 / 13
11	, ,	10:26	68.17	10.56	15	6.1	450 "	6	11 /1
i,	\1	10.38	82.5	10.71	15	5.7	444 "	7	u n
ν, ι	N	10:53	96.2	10.65	15	62	462.1	8	11 (1)
1,	11	11:04	110,	11.63	15.5	6.1	454 "	9	,1 II
14	11	11:17	123.7	11.46	15	61	467"	10	1(/1
11	, (11:29	137.5	11.61	5	6.1	453 "	11	II n
11	1,1	11.40	151,2	11.70	15	5,9	467 "	12	At 11
11	۱ ,	11.53	165,0	11.63	15	5.7	472 "	13	11 H
1,	• 1	11:56		11.64		_		_	Stop Pump
v	11	11:3 6 :30		10.91					Recovere
и	ti	11:57		10.3		_		_)= =
U	u	N:57:30		9,81			_		n V
11	ц	11:58		9:54		_			11 11
lt.	u	11:58:30		9:30		_	_		U 11
11	11	11:59		9.09		_			u u
LI.	11	12:00		8.72					il ti
и	16	12:01		8.49	,	_			11
11	lı	12:03		8.19		_			11 11
11	11	12:05		8.02		_			11 11
11	i i	12:08		7.88				_	ri [1

FIELD WATER SAMPLING DATA SHEET Fort Quendall- Project 90029 A Don W. Spencer- Project Geologist

EIL	DATE	TIÆ	VOLUME OF DISCHARGE	DEPTH TO WATER	TEMP (°C)	рН	Cs	SAMPLE #	REMARI	(S
3H-2	6-17-83	,5:48		9.36	13	5.9	705unlas	l	START	Amp
1.1	V	13:02	13.75	10,29	15	5.8	782unha	1	Pumpin	•
1,1	13	13:16	27.5	10.54	15.5	5.7	30E 11	3	11	11
(1	,1	13:29	41.25	10.64	15	5.7	902 1	4	l i	11
ţi	١,	85:51	550	10.81	15	6.7	876 V	5	11	11
11	1)	13:47	63.7	11.00	15	58	247 ''	6	11	1)
3.1	11	13158	82.5	11.05	15	5.7	844 "	7	11	1 (
11	ξÌ	1'08	96.25	11.20	14	5.7	<i>છુ</i> લુ ૫	8	11	11
11	11	14.16	110	11.36	14	5.7	83711	3	1	1/
11	11	14:25	123.7	11.25	14	5.	841	10	r)	u
11	11	14:34	137,5	11,28	14	5.8	836 "	IJ	ď	(I
1,1	1	144	15 .2	11.22	14	5.8	יי דוד יי	12	7	γl
••	Į1	14:53	165	11.3	14	5.8	852	13	u	VI.
, 1	ı l	14:56						-	4073	anc4
11	\t	14:56:30		10.33		•			Recou	•
11	ıt	14.57		10.11				_	n	71
11	W.	14;57326		9.96					11	11
11	11	14;58		9.33					11	M
u	Ц	14:59		994	_				11	17
u	Ч	15:00		9.78		_		_	ł į	1)
1	11	15:02		9.75					11	٠)

FIELD WATER SAMPLING DATA SHEET Fort Quendall- Project 90029 A Don W. Spencer- Project Geologist

WELL	DATE	TIME	Volume of Discharge	DEPTH TO WATER	TEMP (°C)	pН	Cs	SAMPLE #	REMARKS
BN-5A	6-20-83	14:40		7.10	18	5.6	310unh	1	Gract Fourt
	ţ1	14:49	2.5	8.78	28	}	354 11	2	Pung. NG
	ę l	15:14	5.0	9.18	39	5.5	516 "	3_	wate Low vate
(1	ţ.	15:15		9.8		_			Stop Pond
1,	(1	15 (€ 20		9.61		_	_		Recovery
(1	Įį	15.16		9,57	_	_			'' ''
li .	()	15:16:20		9.52					11 11
1,1	į, l	15:17		9.5	_	_			n H
1.	(1	15:19		9.34		_			1) 1)
11	i i	15:25		9.13	-	_			11 11
11	\i	15:30		9.03				_) 11
11	1 ι	15:40				_	_	_	Bogin Railing
			-						7
							<u>-</u>		
	* We						0,28	GP1	М
	wh	ich he	for brub g	ره ال	44 4 11 5	64:0	<u> </u>		
	<u>ti</u>	ne to	achieve de	ی (ایمون	mulati	<u>بر بر</u>	lune.		
			Collow Danollos						· · · · · · · · · · · · · · · · · · ·
	<u> </u>	resid	or ou had	er sugge	5 h	hat	reduce	<u>U</u>	
	Pvo	Just isi	ty may be	the wa	ult d	(ج	Loon.		
	<i>P1</i> 0	CKAGE	in the w	ell by	moli	e	t 4.2.		
				,					
					4)	3/	- תנו הת		

1000

WELL.	DATE	TIME	VOLUME OF DISCHARGE	DEPTH TO WATER	TEMP (°C)	рН	Cs	SAMPLE #	REMARI	KS
BH-G	6-17-82	16:01		4.67	14	5.5	305anha	1	57427	Anca
- 11	ιl	16:08	13.75	6.82	14	5.4	336 11	5	Pumpi	J6 ,
L _F	ti.	16:15	27.5	6.98	14	5.4	344 "	3	n,	11
ıl	Lt.	16:21	41.25	7.93	ſα	5.5	337 "	4	ΛÜ	Į:
ηŧ	ħ	16:26	55.0	8.13	14	5.5	339 11	5	11	13
ľ	u	16'31	68.17	8.10	14	5.4	344 "	6	t\	1/
16	¥	16:36	82.5	3.14	14	ક. પ	342 "	7	11	71
(d	4	16:40	96.2	3.18	14	5,4	339 "	8	n	E)
į ((1	16:45	110	8,17	14	5,7	341 "	9	u	t i
11	(!	16:49	123.7	8,43	14	5.7	340 ·	10	<u> </u>	¢!
Į1	le	16.53	137.5	8.62	۱4	5.7	342 "	11	l;	t _I
(t	į	16:58	151.2	8.64	14	5.b	340 1	12	Ч	1/
11	11	17:02	165	8.63	14	5.6	338"	13	L	ŧ į
11	را	17:04		8.70		-			Stop	Pump
ч	ĮΙ	17:04:30		8.10		_	-	-	Reco	7
1 (ţ!	17:05		6.54		_			11	7=
11	į.l	17:05:30		6.27		1			11	11
IJ	(1	17:06		6.09		1		_	u	<u> </u>
ų	(1	17:07		5,93	,			_	ч	\1
ξÌ	Ţ,	17:08		5.83		_		—	ti	1.1
11	11	17:10	-	5.67					1)	11
١,	ιl	17:12		5.56		-		~	11	11

VELL.	DATE	TIME	VOLUME OF DISCHARGE	DEPTH TO	TEMP (°C)	pН	_Cs	SAMPLE #	REMARKS	_
BH-18	6-16-83	15:38		6.37	15	ó 3	402 unh	1	AMCA TARTS	
u .	: 1	15:52	13:75	11.88	15	6.0	501 "	2	Punping	
1	ľ	16:10	27.5	12.92	15	6.0	515 v	3	u u	
VI.	۱t	16:24	41.25	13.17	15	5.8	520	4	પ ા	
Ŀ	l c	16:42	55	13.18	15	5.2	527 "	5	Ц и	$\left] arphi ight.$
t'	,	6:55	68.7	16.38	15	5.9	512 11	6	ij] [
il	7.1	17.05	82.5	17.63	15	5,9	510 "	7	u u	
,	l]	17.17	96.3	18.36	15	5.8	516 "	8	TRICESIONS SHOPLY DOOK	
ęį	γl	רב:דו	(10	18.47	15	58	520 u	9	ty (1	
,,	ĺŧ	17.40	123.7	19,09	15	5.8	519 "	10	n II	$ brace \in$
11	1t	18:02	137.5	14.81	15	5.8	539 11	IJ	n d	7
น	11	13:21	151.2	14,33	15	5.8	538 1	12	u u	7
1,1	Vi.	18:35	165	16.84	15	28	E2511	13	11 11	
11	Ŋ	18:38		17.0	_	_		—	gmag got	7
. ,1	11	1838 30	1	16.35		-	_		Recountly	
ı(и	1829		15.75		_	_	—	17 11	7
1/	u	rg 39 33				_	_		1(11	7
11	u	18 40				1	1	-	11 11	
1	11	184020		14.60		_		-	11 11]
11	ч	134130		4,25	_	1)		11 11	
li.	ŧį	1842		13.79	1	1)	_	ų 11]
ıl	ų	18 43		13.05		_			11 11]
11	Ц	1844		12.56	—	_		_	i.	
ų	ч	1846		11.56					¥1 \ \}	
ıı	Ц	1850		10.4		_			η \	

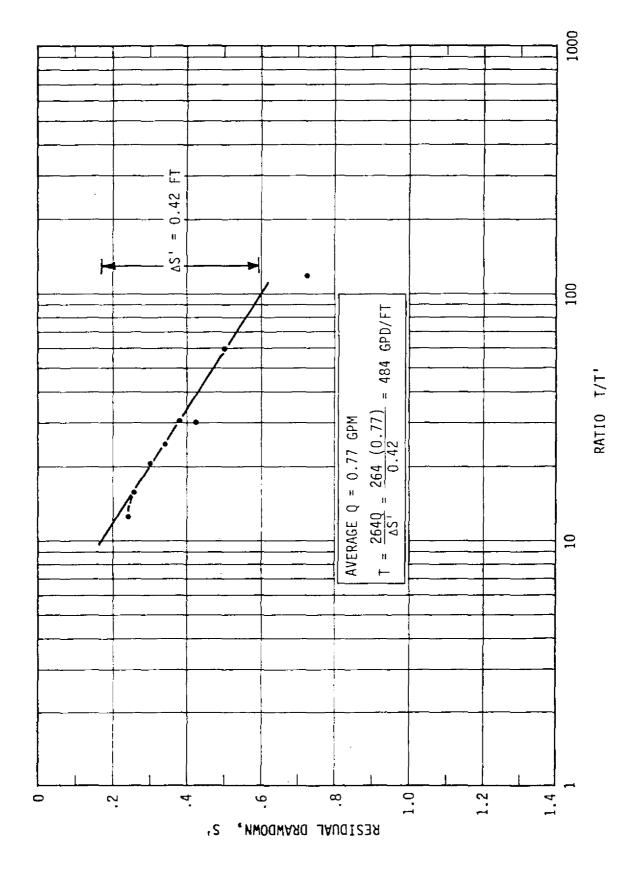
9m 9n 9n
9 9n
92
<u>νρ</u>
<u>πρ</u>
· · · · · · · · · · · · · · · · · · ·
:
·
-
UNG
}

ELL	DATE	TIÆ	VOLUME OF DISCHARGE	DEPTH TO WATER	TEMP (°C)	pН	Cs	SAMPLE #	REMARKS
24 10	6-15-13	9:15	0	6.65	13.0	5.6	548umha	1	Step Alma
11	11	9:19	13.75	10.35	13.5	5.7	512 11	2	Pumping
11	ίĮ	9:26	27.5	10.95	13.5	5.7	512 11	3	. ((
11	į į	9:31	41,25	11.13	13.5	5.7	512 11	4_	11 11
,,	11	9:38	Ç5	11.32	13.5	5.6	513 "	5	11
11	+ (9:43	<u>63.7</u>	11.48	13.5	5.7	507 11	6	11 11
(1	U(7:51	12.5	11.62	14.0	5.7	505 "	7_	tı lı
11	, 1	9:58	96.25	11,75	14.0	5,7	510 "	8	tı tı
11	11	10.02	0	11.85	14.0	5.7	506 11	9	ч ц
11	i t	10:12	123.7	11.96	14.0	5,6	499 "	10	4 11
.,	1.1	10:15	137,5	12.02	14,0	5.6	510 "	11	u u
-1	11	10:22	151.2	12.18	14.0	5.6	501"	12	y ti
,,	11	10:27	165	12.22	14.0	5,6	502"	13	y (1
11,6	Ų.	10:28		10.35					Stop Pump
11	1 }	10:29		10.35	_	_			Recovery
14	11	10/29(30		9.58		_			11 1)
u	ļ1	10:30:00		9.17				_	11 17
11	.1	10:30:30		8.80		_			1) 1)
11	11	10:31		8.54		_		_	1)
11	11	10:31:30		8.32		_		_	11 11
ų	l _i	10:32		3.18		_		_	u u
11	ş ł	10:33		7,94			~		11
ľ	l i	10:34		7.8			-	~	1, 11
11	11	10:35]	_		BECID HAND
11	Į I	11:00				_	-	_	SMLING

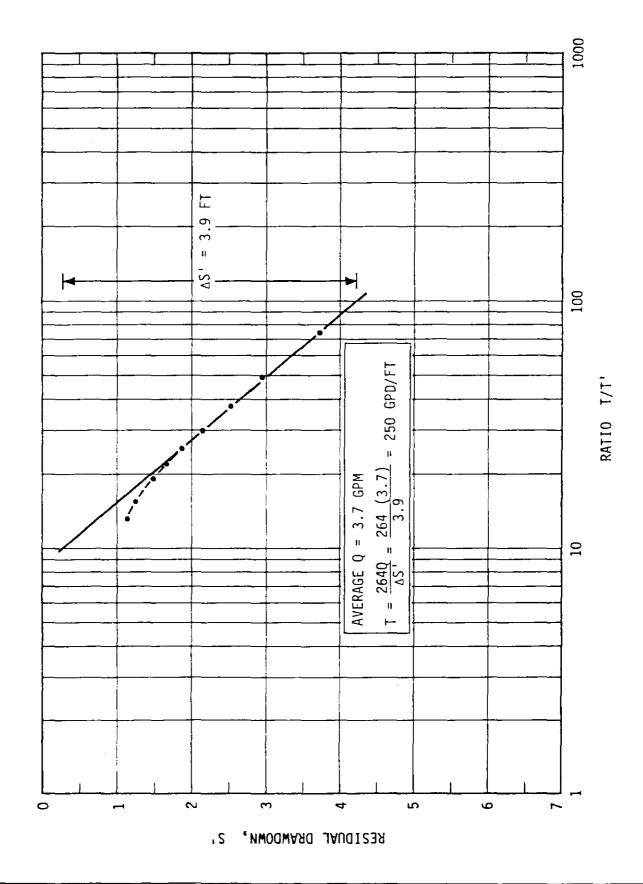
DATE	TIÆ	Volume of Discharge	DEPTH TO WATER	TEMP (°C)	рН	Cs	AMPLE	REMARKS
6-20-83	16:18		7.50	14	5.9	358 umha	١	Briling
u	16:41			14	6.8	<u> ३५३ ।</u>	2	end
11	16:50		10.32		_			Recovery
И	16'50 ID		10,65	~	_	_		7:
Ir	15.15		10.53			_		it it
11	161.52		10.28	_	_	_		16 16
14	16:52		10,09		_	_		n n
ţ1	16.22		9.70	_	_			ii (:
ļi .	17:00		9.09		_			ų t
11	17:05		8.65	14	69	341 "	3	(1
* WEL	ل يامع	PUMPED	مہ	6-15-	83	٢,٠	٦	,
ंऽऽ	ولد جنوم	productions	s of a	intec	4 (Jan A		
<u>du2</u>	ಜ್ರಾಕಗ್ರ	kailing	02 6-20	<u>. १२</u>	2 [‡]	3		
100	res p	embel 1	يملي رياد	دلم م	e Aug	۽ لاون	٧,	
	1				-			
				4				
	6-20-83 11 11 11 11 11 11 11 11 11 11 11 11 11	6-20-83 16:18 11 16:41 11 16:50 20 11 16:52 11 16:52 11 16:52 11 17:05 11 17:05 11 17:05	DATE TIME DISCHARGE 6-20-83 16:18 16:41 16:50 70 16:52 16:52 17:00 17:05 17:05 Pomted Submodelic	DATE TIME DISCHARGE WATER 6-20-83 16:18 7.50 11 16:41	6-20-83 16:18 7.50 14 11 16:41 - 14 11 16:50 - 10.82 - 10.65 - 10.65 - 10.28 - 10.09	6-20-83 16:18 7.50 14 5.9 11 16:41	6-20-83 16:18 7.50 14 5.9 358	6-20-83 16:18 7.50 14 5.9 358

WELL	DATE	TIME	Volume of Discharge	DEPTH TO WATER	TEMP (°C)	рН	_Cs	AMPLE #	REMARKS
BHIZA	6-27-83	1450		5.11	16°		899 make		exileD
!									
	P		,						
	BAILED		• • •	well co	(لحاد	ಸ್ಕಾರ	boug	<u>xe</u>	
	Mar	tely	tor bomb	test			ļ 		
		-				-			
				& Dem					
				,					
				,					
	_								
					,				
				<u>_</u>					

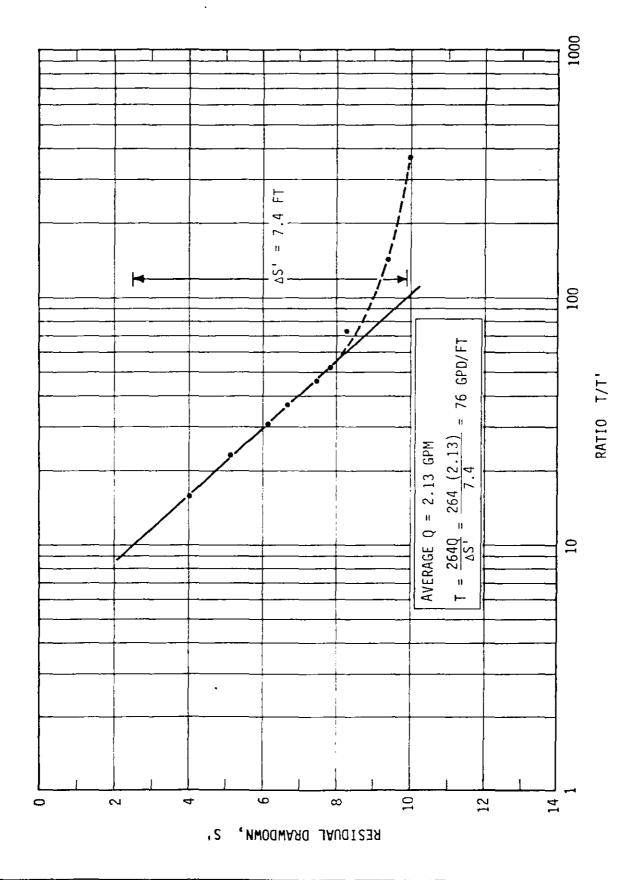
11 11 13:05 13.75 - 18 6.3 437 11 2 11 11 13:22 27.5 - 17 6.0 413 11 3 1 11 11 13:42 - - - - - - - - 11 11 13:42 - - - - - - - 11 11 13:42 - - - - - - - 11 11 13:42 - - - - - - -	START Pump PumpinG 11 11 STOP Pump Recovery
" " 13:05 13.75 — 18 6.3 437 " 2 " " 13:22 27.5 — 17 6.0 413 " 3 " " " 13:38 41.2 — 17 5.7 415 " 4 " " 13:42 — — — — 5	11 11 11 11 11 11 11 11 11 11 11 11 11
11 " 13:38 41.2 — 17 5.7 4:5 " 4 11 " 13:42 — — — — — — — — — — — — — — — — — — —	11 11 STOP PUMP
" " 13:42:30 — G.22 — — — §	570P Pump
11 13:42:30 - 6.22	
	(Carane De
<u> </u>	KELDACAN
" 11 13:43 6.0	11 11
11 11 13:43:30 - 5.92 1	H H
" 13:44 - 5.88 1	11 11
11 11 13:44:30 - 5.84 1	и и
" " 13:45 — 5.80 — — — "	11 11
" " 13:46 - 5.76 1	it <u>,,</u>
" " 13:47 - 5.74 - - - 1	
1" " \3:49	BAILING BERIN HAND
" " 14:00 — — — — — 6	BHITING HAND


WATER LEVEL DATA SHEET

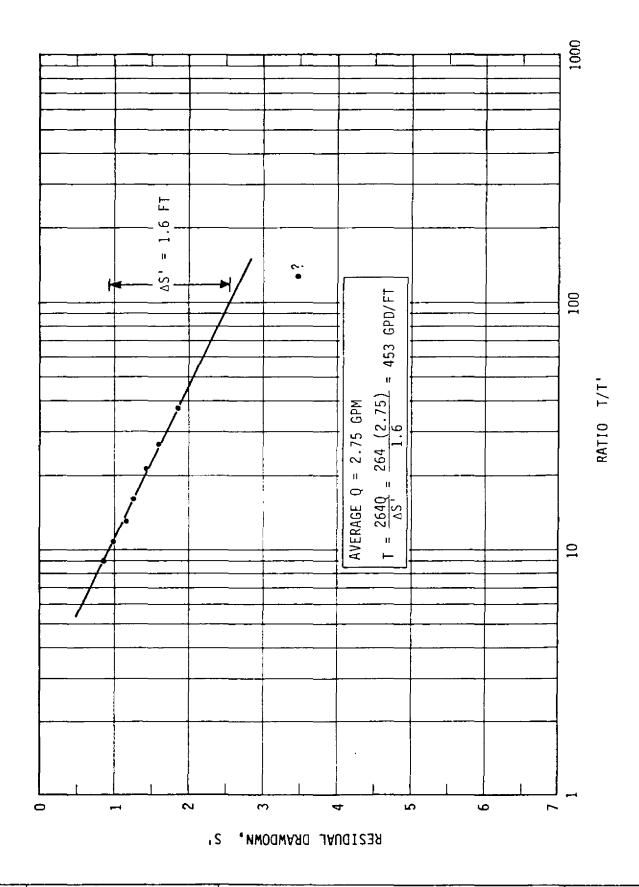
WELL	DATE	TIME	MEASURING POINT (MP)	MP ELEVATION (FT)	DEPTH TO WATER (FT)	STATIC WATER ELEVATION (FT)
BH-1	6-27 - 83	14:15	top of casing	23.42	6.11	17.31
BH-2	6-27-83	13:59	top of casing	25.47	7.53	17.94
BH-2A	6-27-83	14:07	top of casing	25.06	7.16	17.90
BH-5	6-27-83	12:50	top of casing	25.64	9.51	16.13
BH-5A	6-27-83	13:02	top of casing	24.28	7.81	16.47
BH-6	6-27-83	12:44	top of casing	21.85	4.84	17.01
BH-8	6-27 - 83	13:09	top of casing	25.12	6.40	18.72
BH-8A	6-27-83	13:12	top of casing	23.64	4.72	18.92
BH-10	6-27 - 83	12:10	top of casing	22.50	6.59	15.91
BH-12	6-27 - 83	12:19	top of casing	24.39	7.56	16.83
BH-12A	6-27-83	12:23	top of casing	21.41	5.11	16.30
BH-15	6-27-83	12:31	top of casing	21.70	5.55	16.15


APPENDIX C

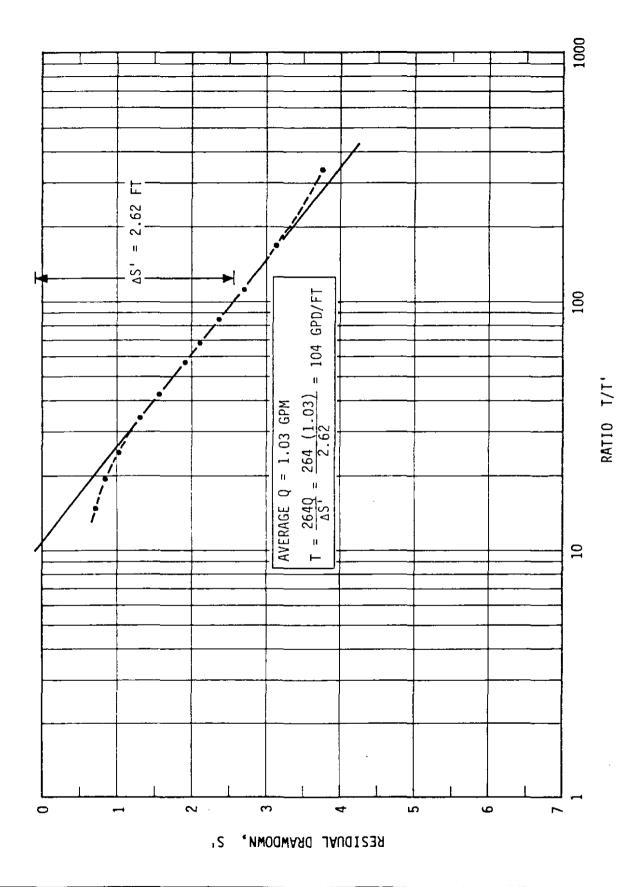
TRANSMISSIBILITY CALCULATIONS FOR SELECTED WELLS


.

Project No. 90029A	PORT QUENDALL Renton, Washington	DRAWDOWN CURVE AND TRANSMISSIVITY	Appendix
Woodw	ard-Clyde Consultants	CALCULATION FOR BORING 15	



Project No. 90029A	PORT QUENDALL Renton, Washington	DRAWDOWN CURVE AND TRANSMISSIVITY	Appendix
Woodw	rard-Clyde Consultants	CALCULATION FOR BORING 10	



· ·

Project No. 90029A	PORT QUENDALL Renton, Washington	DRAWDOWN CURVE AND TRANSMISSIVITY	Appendix
Woodw	rard-Chyde Consultants	CALCULATION FOR BORING 8	

Project No. 90029A	PORT QUENDALL Renton, Washington	DRAWDOWN CURVE AND TRANSMISSIVITY	Appendix
Woodw	vard-Clyde Consultants	CALCULATION FOR BORING 6	

Project No. 90029A	PORT QUENDALL Renton, Washington	DRAWDOWN CURVE AND TRANSMISSIVITY	Appendix
Woodward-Clyde Consultants		CALCULATION FOR BORING 2A	

APPENDIX D

ANALYTICAL METHODS AND RESULTS

NOTE: Data for samples collected offsite have been deleted from the laboratory data sheets in Sections D-5 and D-6.

APPENDIX D-1
DESCRIPTION OF THE ANALYTICAL
METHODS FOR THE SOIL PAH SCREEN
AND PENTACHLOROPHENOL ANALYSIS OF
WATER

ABSORBANCE SCREEN ON SOILS

- 1. Weigh 1 + / .05 g soil to a 250 ml beaker.
- 2. Add 10 ml DIW and adjust pH to 11 or greater.
- 3. Add 60 ml methylene chloride, extract 2 minutes with sonic probe.
- 4. Add sufficient anhydrous sodium sulfate to absorb all water; sonify an additional 30 sec.
- 5. Filter the extract. Rinse the retained material several times with $\mathrm{MeCl}_2\,.$
- 6. Using the steam bath and a nitrogen stream, blow down the extracts.
- 7. Add 10 ml cyclohexane to the extracted material; swirl to dissolve.
- 8. Transfer the contents of the beaker to a culture tube with teflon lined lid.
- 9. Compare spectrophotometrically against a benzo(a)pyrene standard at 250 nm as follows:

B(a)P conc., ug/ml	equivalent soil %
0	0
1	.001
2	.002
5	.005
10	.010

10. Dilute the extracts as necessary to remain within the calibration curve.

PENTACHLOROPHENOL

(Sep-Pak Method)

- 1. Sep-Pak extraction.
 - a. Take 250 ml sample to 400 ml beaker.
 - b. Acidity with 5 ml conc. H₂SO₄.
 - c. Pass through an activiated Sep-Pak.
 - d. Elute from Sep-Pak with 1.5 ml CH₃CN.
 - e. Extract is now ready for analysis.
- 2. HPLC Analysis.
 - a. Instrument conditions

Wavelength = 254 nm
Mobile phase = 60% CH₃CN/40% H₂O + 0.1% HOAc
 Flow = 1 ml/min
 Chart = 0.1 in/min
 injection = 25 ul
AFS = 0.01 AU
Column - Zorbax C18, 5um

b. Use standards of about 15, 7.5 ppm. This should give a detection limit of about 2 ug/L.

APPENDIX D-2
QUALITY ASSURANCE REPLICATE ANALYSES

Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO

5

Woodward Clyde Consultants

LABORATORY NO

81030-c

Replicate Quality Control Report

Sample No.	<u>Analyte</u>	Replicate 1 parts per m	Replicate 2 illion (mg/L)	Relative Error, %	Control Limit
155 155 157 157 155 157 157 161 167 154 154 158 155	Sodium Potassium Sodium Potassium Sulfate Calcium Magnesium Chloride Chloride Nitrate Alkalinity Nitrate Calcium	30. 22. 25. 13. 4. 38. 5.4 8. 42. L/0.05 280. 0.10 64. 28.	32. 22. 25. 13. 3. 38. 5.4 8. 43. L/0.05 280. 0.10 62. 29.	6.7 0. 0. 0. (1) 0. 0. 0. 2.4 (0) 0. (0) 3.1 3.6	*****
149 2,4,6 149 pentac	-trichlorophen chlorophenol (k)fluoranthen	parts per b	29. illion (ug/L) 21.7 L/10. 5.78 6.24	84.* 0. 1.4 9.5	** 0-3 **

The control limit is a statistically derived measure of the level of confidence in the measurement. These established control limits determine the range within which the analytical value will fall 95% of the time.

Parentheses () indicate absolute, not relative, error.

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff im-connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

^{*}Insufficient sample to repeat analysis. Duplicate analysis indicates a possible matrix problem.

^{**}No control limits yet established.

Laure Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

9

Woodward Clyde Consultants

LABORATORY NO.

81030-d

Replicate Quality Control Report

%, by weight

Sample No.	Analyte	Replicate 1	Replicate 2	Relative Error, %
1	Fluor. Screen	0.005	0.015	(0.010)
15	n .	L/0.001	L/0.001	(0)
30	II	0.004	0.002	(0.002)
45	1I	0.081	0.058	28.
60	ti	0.007	0.007	(0)
75	Ħ	0.94	0.017	98.
90	ţi .	1.0	0.90	10.
105	II .	L/0.001	0.002	(0.002)
120	tt .	0.003	L/0.001	(0.003)
130	II .	0.008	0.082	(0.074)
147	U	1.7	1.5	11.8

Comment

No control limits have yet been established. Nevertheless, one would expect a high variability in this determination due to the heterogeneous nature of soils and the fact that only 1-gram portions are used for the analysis.

Parentheses () indicate absolute, not relative, error.

APPENDIX D-3
QUALITY ASSURANCE SPIKING STUDY RESULTS
FOR INORGANIC PARAMETERS IN WATER SAMPLES

Testing Laboratories, Inc. 940 South Harney Street. Scattle Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology and Technical Services

PAGE NO.

6

LABORATORY NO.

81030-c

Woodward Clyde Consultants

Spike Quality Control Report

parts per million (mg/L)

Sample No.	Analyte	Sample Found	Spike Level	Spike <u>Found</u>	% Recovery
1 55	Sodium	30.	25.	55.	100.
155	Potassium	22.	25.	50.	112.
157	Sodium	25.	25.	50.	100.
	Potassium	13.	25.	40.	108.
157	Calcium	3 8.	25.	60.	88.
157	Magnesium	5.4	25.	31.	102.
161	Chloride	8.	36.	43.	97.
154	Nitrate	L/0.05	0.1	0.092	92.
158	Nitrate	0.10	0.10	0.19	90.
155	Calcium	64.	25.	84.	80.
155	Magnesium	28.	25.	54.	104.
162	Sulfate	22.	20.	45.	115.

APPENDIX D-4
QUALITY ASSURANCE SPIKING STUDY RESULTS
FOR ORGANIC COMPOUNDS IN SOIL AND WATER

Lauces Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206)767-5060

Chemistry Microbiology and Technical Services

PAGENO 9

Woodward-Clyde

LABORATORY NO. 81030-a

Surrogate Recovery Quality Control Report

Listed below are surrogate (chemically similar) compounds utilized in the analysis of volatile compounds. The surrogates are added to every sample prior to analysis to monitor for matrix effects and purging efficiency. The control limits represent the 95% confidence interval established in our laboratory through repetitive analysis of these sample types.

	mg/kg						
		Spike	Spike	X	Control		
Sample #	Surrogate Compound	<u>Level</u>	<u>Found</u>	Recovery	<u>Limit</u>		
5.				. ، ک	1		
BH-7	D5-phenol	20.0	12.0	59.8	10-104		
**	2-fluorophenol	20.0	15.4	7 7.0	26-116		
14	D5-nitrobenzene	20.0	14.8	74.0	19-115		
**	2-fluorobiphenyl	20.0	23.8	119.	17-125		
61	2-fluoroaniline	20.0	14.8	73.8	44-101		
**	D4-1,2-dichloroethane	45.5	41.4	91.0	⁶ 50-150		
41	p-bromofluorobenzene	45.5	49.0	108.	5 7-137		
tt	D8-toluene	45.5	49.7	109.	81-120		
11	1,2,3,4-TCDD	.0098	.161	1640.	18-128 *		
11	isodrin	.0816	NA	NA	3-170 (1)		
BH-8	D5-phenol	20.0	10.4	52.0	10-104		
et.	2-fluorophenol	20.0	14.8	74.0	26-116		
**	D5-nitrobenzene	20.0	13.8	69.2	19-115		
11	2-fluorobiphenyl	20.0	26.5	133.	17-125 **		
FI .	2-fluoroaniline	20.0	12.9	64.6	44-101		
**	D4-1,2-dichloroethane	41.7	43.5	104.	50-150		
**	p-bromofluorobenzene	41.7	51.2	123.	57-137		
11	D8-toluene	41.7	44.1	106.	81-120		
11	1,2,3,4-TCDD	.0092	151.		18-128 *		
88	isodrin	.0766	NA	NA	3-170 (1)		

⁽¹⁾ large interfering peak did not allow the accurate determination of isodrin matrix interference

NA = not applicable

^{**}other surrogates indicate analysis in control

Laure Street. Seattle. Washington 98108 (206)767-5060

Certificate

Chemistry Microbiology, and Technical Services

1

PAGE NO.

10

LABORATORY NO.

81030-d

Woodward Clyde Consultants

Surrogate Recovery Quality Control Report

Listed below are surrogate compounds which are utlized in the analysis of priority pollutants. These compounds are added to every sample before extraction to provide quality control by monitoring for matrix effects and sample processing errors. The control limits represent the range in percent recovery which as been deemed acceptable by the EPA. 2-Fluoroaniline (2FA), 2-Fluorobiphenyl (2FB) and D5-Nitrobenzene (D5NB) represent base/neutral compounds.

parts per million (mg/kg), dry basis

Sample No.	Analyte	Spike Level	Spike Found	% Recovery	Control Limit
5 8	2-FB	24.2	21.2	87.6	30-100
58	D5-NB	24.2	23.8	98.3	40-120
5 8	2-FA	24.2	29.1	120.	40-120
69	2-FB	125.	7.0	5.6	30-100*
69	D5-NB	125.	5.3	4.2	40-120*
69	2-FA	125.	7.5	6.0	40-120*
102	2-FB	53.8	23.5	43.7	30-100
102	D5-NB	53.8	21.7	40.3	40-120
102	2-FA	53.8	26.7	49.6	40-120

The control limit is a statistically derived measure of the level of confidence in the measurement. These established control limits determine the range within which the analytical value will fall 95% of the time.

*Suspect a matrix interference problem.

Testing Laboratories, Inc. 940 South Harney Street. Scattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology and Technical Services

PAGE NO.

7

Woodward Clyde Consultants

LABORATORY NO.

81030-c

Surrogate Recovery Quality Control Report

Listed below are surrogate (chemically similar) compounds utilized in the analysis of organic compounds. The surrogates are added to every sample prior to extraction to monitor for matrix effects and sample processing errors. The control limits represent the 95% confidence interval established in our laboratory through repetitive analysis of these sample types.

parts per billion (ug/L)

Sample No.	Surrogate Compound	Spike <u>Level</u>	Spike Found	% Recovery	Control <u>Limit</u>
148	benzo(k)fluoranthene	5.000	3.57	71.4	63-119
149	н	5.000	5.7	114.	н
150	Ħ	5.000	3.00	60.0**	н
151	ti .	5.000	5.150	103.	Ħ
152	11	5.000	4.57	91.4	II .
153	ti .	5.000	100.	2000.*	Ħ
154	11	5.123	4.99	97.4	"
155	п .	5.076	5.18	102.	п
15 6	П	5.025	89.9	1790.*	п
157	П	5.051	115.	2280.*	II.
158	41	5.181	490.	9460.*	£1
159	ti .	5.263	6.47	123.*	44
160	11	5.435	21.9	404.*	Ð
161	14	5.181	3.83	74.0	89
162	(I	5.000	4.02	80.4	01
163	ĮI.	5.000	3.84	76.8	11
164	ш	5.000	3.79	75.8	11
167	ti	5.181	4.87	94.	a ,
Blank	II	5.000	4.44	88.8	n ⁷
149 dup	н	5.780	4.52	78.2	11
148	2,4,6-trichlorophenol	100.0	84.0	84.0	(I
149	и	100.0	3.46	3.5**	11
150	II.	100.0	73.9	73.9	ŧı

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff irriconnection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Chemistry Microbiology, and Technical Services

1

PAGE NO

Я

Woodward Clyde Consultants

LABORATORY NO.

81030-с

Surrogate Recovery Quality Control Report

parts per billion (ug/L)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control <u>Limit</u>
153	2,4,6-trichlorophenol	100.0	77.3	77.3	63-119
154	n	102.6	37.9	36.9**	ti .
159	11	105.3	84.9	80.6	H
162	14	100.0	67.2	67.2	41
Blank	44	100.0	97.5	97.5	11
150 spike	11	119.0	88.0	73.9	11
149 dup	II .	115.6	21.7	18.8**	•1

^{*}Matrix interference.

^{**}Insufficient sample to repeat analysis.

APPENDIX D-5
SOIL SAMPLE ANALYSIS RESULTS

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology and Technical Services

CUENT Woodward-Clyde 100 Pringle Ave. Walnut Creek, CA 94956

LABORATORY NO. 81030-a

DATE June 22, 1983

REPORT ON SOIL

SAMPLE IDENTIFICATION

TESTS PERFORMED

AND RESULTS:

Marked: 7)

7) BH-9 - D-7 - D. Spencer - 5-16-83

24) BH-2 - D-2 - D. Spencer - 5-17-83

58) BH-11 - D-8 - D. Spencer - 5-18-83

69) RH-4 - n-4 - D. Spencer - 5-18-83

76) BH-6 - D-4 - D. Spencer - 5-19-83

102) BH-10 - D-5 - D-Spencer - 5-20-83

Samples reported as BH-7 and BH-9 were composited as follows prior to Priority Pollutant Analysis

Composite Disignation

BH-7

BH-9

Samples Composited

BH-7 - D-2 ND-4, D-5 BH-9 - D-2 ND-6, D-7

The state of the s

Note on Fluorescence Screen we were inable to deficually compare sample extracts with benzo(a)pyrene standards iduality deficiences in fluorescent color. However, the absorbance of the extracts was determined at 250 nm and compared to a B(a)P curve. The results of this determination are attached.

All back-up data will follow in a separate package.

Respectfully submitted.

Laucks Testing Laboratories, Inc.

Mike Nelson

MN:vb

This report is submitted for the exclusive use of the person, purnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of solenos.

Lating Laboratories, Inc. 940 South Harney Street, Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology and Technical Services

PAGE NO. 2

Woodward-Clyde

LABORATORY NO. 81030-a

BH-7

Tentatively Identified Compound	Estimated Concentration ug/kg
ethvlhenzene	84,600
1,3-dimethylbenzene	89,300
1,4-dimethylbenzene	38,200
1,3,4-trimethylbenzene	29,800
1,3,5-trimethylbenzene	64,300
benzofuran	49,000
ethyl-methyl-benzene	26,200
2,3-dihydro-1-H-indene	87,800
lH-indene	255,900
.l-methyl-lH-indene	15,900
l-methyl-lH-indene	19,100
methyl naphthalene	137,300
1,1'-biphenyl	32,700
ethylnaphthalene *	23,000
dimethylnaphthalene *	31,600
dimethylnaphthalene *	57,900
9-H carbazole	33,200
methyl phenanthrene *	18,600
methyl phenanthrene *	24,800
methyl phenanthrene *	9,700
methyl phenanthrene *	15,000
methyl phenanthrene *	11,800
4H-cyclopenta(DEF)phenanthrene	33,000
1-phenyl-naphthalene	15,200
methyl pyrene	50,300

^{*}response factor of isomer or similar compound.

lesting Laboratories. Inc. 940 South Harney Street, Seattle, Washington 98108 (206)767-5060

Certificate

Chemistry Microbiology, and Technical Services

Gravimetric Polycyclic Aromatic Hydrocarbons, per Washington State DOE WAC 173-302, % by weight, as

received basis*

Fluorescence Screen, % as benzo(a)pyrene PAGE NO.

69

0.460

0.44

58

0.018

0.01

76

0.026

0.01

102

0.064

0.002

Woodward-Clyde

LABORATORY NO. 81030-a

3

BH-9

文化文		

Estimated Concentration Tentatively Identified Compounds ug/kg 128,300 ethylbenzene 226,400 1.3-dimethylbenzene 97,800 1.2.3-trimethylbenzene 158,300 2,3-dihydro-lH-indene 1-ethyhyl-4-methyl-benzene 201,600 18,300 2.3-dihydro-1-methyl-1H-indene 104,100 1.1'-biphenyl 56,200 2-ethylnaphthalene * 99,100 1,3-dimethylnaphthalene * 1,7-dimethylnaphthalene * 217,900 410,900 4-methyl-phenanthrene * 4H-cyclopenta(DEF)phenanthrene * 96,900 *response factors used for quantitation were taken from similar priority pollutants. All others - RF assumed to be 1.0

7

0.061

0.03

24

0.057

0.002

Testing Laboratories, Inc. 940 South Harney Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry, Microbiology, and Technical Services

PAGE NO. 4

Woodward-Clyde

LABORATORY NO. 81030-a

			58	69	76	102_
Volatile Aromatics,						
mg/kg, as received	2.1	L/0.2	L/0.2	0.3	L/0.2	L/0.2
benzene toluene	5.2	L/0.2	L/0.2	L/0.2	L/0.2	L/0.2
xylene	7.3	L/0.4	L/0.4	L/0.4	L/0.4	L/0.4
methylbenzene &						- 10 1
styrene	4.3	L/0.4	L/0.4	L/0.4	L/0.4	L/0.4

U.S. ENVIRONMENTAL PROTECTION AGENCY - CLP Sample Management Office P.O. Box \$18, Alexandria, Virginia 22313 - 703/557-2490

Sample Number BH-7

ORGANICS ANALYSIS DATA SHEET

b Samp	le LD. Nos _	81030-1		_ QC R	eport No:		
		Multiply Detection Limi	cs by I 🔲 or 129	□ (Chec	k Box for App	propriate Factor)	
		ACED COMPOUNDS	ug/t		8	ASE/NEUTRAL COMPOUNDS	ug/l
700 A	CAS#		or ug/kg X (circle one)	PP #	C45.4		or ug/log)
PP #		9 A.C. suisblussabanal	•		CAS #	N == 1/N:	(circle one
(21A)	88-06-2	2,4,6- trichlorophenol	L/200	(73B)	50-32-8	benzo(a)pyrene	150.000
(72A)	59-50-7	p-chloro-m-cresol	<u>L/200</u> L/200	(74B)	205-99-2	benzo(b)fluoranthene	97,400
(24 A)	95-57-8	2- chlorophenol	L/200	(75B)	207-08-9	benzo(k)fluoranthene	90 600
()IN	120-83-2	2,4-dichlorophenoi	27,500	(76B)	218-01-9	chrysene	80,600
(34A)	105-67-9	2,4-dimethylphenol	L/400	(77B)_	208-96-8	acenaphthylene	71,500
(57 A)	88-75-5	2- nitrophenol		(78B)	120-12-7	anthracene	74,400
(NA)	100-02-7	4-nitrophenol	L/1000	(79B)	191-24-2	benzo(ghi)perylene	44,100
(59 A)	51-28-5	2,4-dinitrophenol	L/1000	(80B)	86-73-7	fluorene	96,500
(60 A)	534-52-1	4,6-dinitro-2-methylphenol	L/400 L/200	(818)	<u>85-01-8</u>	phenanthrene	304,300
(64 A)	87-86-5	pentachlorophenol	L/200	(82B)	53-70-3	dibenzo(a,h)anthracene	11,000
(65A)	108-95-2	<u>phenol</u>		(83B)	193-39-5	indeno(1,2,3-cd)pyrene	36,500
	5.	ASE/NEUTRAL COMPOUNDS	·	(84B)	129-00-0	pyrene	163,000
(15)	83-32-9	acenaphthene	159,300			VOLATILES	
(3B)	92-87-5	benzidine	L/800	(2V)	107-02-8	scrolein_	L/50
(\$8)	120-82-1	1,2,4-trichlorobenzene	L/200	(3V)	107-13-1	acrylonitrile	L/50
(98)	118-74-1	hexachlorobenzene	L/200	(4V)	71-43-2	benzene	1,13
(12B)	67-72-1	hexachloroethane	L/200	(6V)	56-23-5	carbon tetrachloride	L/50
(118)	111-44-4	bis(2-chloroethyl)ether	L/200	(7Y)	108-90-7	chlorobenzene	L/50
(20B)	91-58-7	2-chloronaphthalene	L/200	(10V)	107-06-2	1,2-dichloroethane	L/50
(25B)	95-50-1	1,2-dichlorobenzene	L/200	(11V)	71-55-6	I,I,I-trichloroethane	L/50
(26B)	541-73-1	1,3-dichlorobenzene	L/200	(137)	75-34-3	I, I -dichloroethane	L/50
(27 B)	106-46-7	1,4-dichlorobenzene	L/200	(14V)	79-00-5	1,1,2-trichloroethane	L/50
(28B)	91-94-1	3,3'-dichlorobenzidine	L/400	(15V)	79-34-5	1,1,2,2-tetrachloroethane	L/50
(358)	121-14-2	2,4-dinitrotoluene	L/400	(16V)	75-00-3	chloroethane	L/50
(36B)	606-20-2	2.6-dinitrotoluene	L/400	(19V)	110-75-8	2-chloroethylvinyl ether	L/50
(37B)	122-66-7	1,2-diphenythydrazine	L/400	(23Y)	67-66-3	chloroform	L/50
(39B)	206-44-0	fluoranthene	166,800	(29V)	75-35-4	1,1-dichloroethene	
(+0B)	7005-72-3	4-chlorophenyl phenyl ether	L/200	(30V)	156-60-5	trans-1,2-dichloroethene	L/50 L/50
(41B)	101-55-3	4-bromophenyl phenyl ether	L/200	(32Y)	78-87-5	1,2-dichloropropane	L/50
(+2B)	39638-32-9	bis (2-chloroisopropyl) ether	L/400	(33V)		trans-1,3-dichloropropene	L/50
(+3B)		bis (2-chloroethoxy) methane	L/400		10061-01-05	cis-1,3-dichloropropene	L/50
(32B)	111-91-1 87-68-3		L/200				
		hexachlorobutadiene		(38V)	100-41-4	ethylbenzene	27.000
(538)	77-47-4	hexachlorocyclopentadiene	L/200 L/200	(44V)	75-09-2	methylene chloride	19,300 L/50
(54B)	78-59-1	isophorone	1,139,000	(45V)	74-87-3	chloromethane	
(55B)	91-20-3	naphthalene		(46V)	74-83-9	bromomethane	L/50 L/50
(56B)	98-95-3	nitrobenzene	L/200	(47 V)	75-25-2	bromoform	L/50
(62B)	26-30-6	N-nitrosoC phenylamine	L/200	(48 Y)	75-27-4	bromodichloromethane	
(63B)	621-64-7	N-nitrosodipropylamine	L/200 L/200	(49V)	75-69-4	fluorotrichloromethane	L/50 L/50
(66B)	117-81-7	bis (2-ethylhexyl) phthalate	L/200	(50V)	75-71-8	dichlorodifluoromethane	L/50
(67B)	#5-68-7	benzyl butyl phthalate		(51V)	124-48-1	chlorodibromomethane	
(61B)	84-74-2		L/200	(85V)	127-18-4	tetrachloroethene	L/50
(69B)	117-84-0		L/200	(86V)	108-88-3	toluene	10.150
(708)	84-66-2		L/200	(\$7V)	79-01-6	trichloroethene	L/50
(71B)	131-11-3	dimethyl phthalate	L/200 68,000	(88V)	75-01-4	vinyl chloride	L/50

ORGANICS ANALYSIS DATA SHEET - Page 2

Sample Number

4/12

		•	•				BH-7
Laborator	v Names	Laucks Testing La	boratories, Inc.	Case No:	Wo	odward-Clyde	
	-	81030-1		-	rt Not		
•	_			_			
		Multiply Detection	Limits by 1 ar 10		lox for App	propriate Factor)	-
		PESTICIDES	20	Х		PESTICIDES	
			wg/L			•	աց/1
PP #	cks#		or ug/log X (circle one)	PP #	CAS #		er ug/kgX (circle one)
(89P)	309-00-2	aldrin	7	(103P)	319-85-7	.∄- ВНС	L/5
(90P)	60-57-I	dieldrin	L/5		19-86-8	6 -BHC	L/5
(918)	57-74-9	chlordane	L/5	(105P)	58-89-9	9'-BHC (lindane)	L/5
(92P)	50-29-3	4,4'-DDT	L/5	(106P) 534		PCB-1242	T./50
(93P)	72-55-9	4,4'-DDE	` L/5	(107P) 110	97-69-1	PCB-1254	L/50
(94P)	72-54-8	4,4'-DDD	L/5	(108P) 111		PCB-1221	L/50
(95P)	115-29-7	€ endosulfan	L/5	(109P) 111	141-16-5	PCB-1232	L/50
(%P)	115-29-7	⊿ -endosulfan	L/5	(110P) 120	672-29-6	PCB-1248	L/50
(97 P)	1031-07-8	endosulfan sulfate	. L/5	(IIIP) III	096-82-5	PCB-1260	L/50
(98P)	72-20-8	endrin	L/5	(1129) 120		PCB-1016	L/50
(99P)	7421-93-4	endrin aldehyde	L/5	([13P) 84	001-35-2	toxaphene	L/500
(100P)	76-44-8	heptachlor	L/5				
(101P)	1024-57-3	heptachlor epoxide	L/5			DIOXINS	
(102P)	319-84-6	С -внс	L/5	(129B) 11	746-01-6	2,3,7,8-tetrachlorodiben	zo-p-dioxin L/0.71
	-						
		Non-Pri	ority Pollutant Hazardou	u Substances	List Com	pounds	
		•	-			VOLATILES	
		ACED COMPOUNDS	uz/ 1			TOURIEL	աց/1
			orug/log X				er ug/kg X
	CAS #		(circle one)		CAS #		(circle one)
	65-85-0		L/2.000		67-64-1	acetone	L/75
	95-48-7		15,700		78-93-3	2-butanone	L/75 L/50
	108-39-4		30,400		75-15-0	carbondisulfide	L/30 L/75
	95-95-4	2,4,5-trichlorophenol	L/2,000		<u>519-78-6</u>	2-hexanone	L/50
	R	ASE/NEUTRAL COMPOUNT	ns		108-10-1		
			•		100-42-5	styrene	L/50 T/50
	62-53-3		L/100		108-05-4	vinyl acetate	L/50
	100-51-6		L/400		95-47-6	o-xylene	58,400
	106-47-8		L/1,000				
	132-64-9	dibenzoturan	72,900				

265,000

L/2,000

L/2.000

L/2.000

91-57-6

22-74-4

99-09-2

100-01-6

2-methylnaphthalene

2-nitrozniline

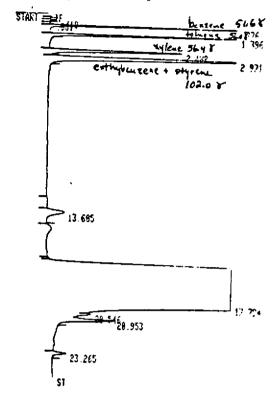
3-nitroaniline

4-nitroaniline

U.S. ENVIRONMENTAL PROTECTION AGENCY - CLP Sample Management Office P.O. Box 818, Alexandria, Virginia 22313 - 703/557-2490

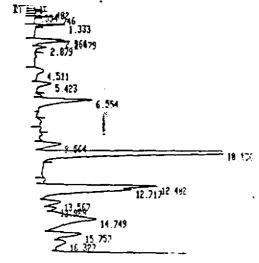
Sample Number BH-9

ORGANICS ANALYSIS DATA SHEET


	y Namet	Laucks Testing Labo 81030-2	<u>ratories, Ir</u>	_		Woodward-Clyde	
ro zewbi	le LD- Not	Multiply Detection Limit	ts by [or 10]		eport No: & Box for Ap	propriate Factor)	
		ACID COMPOUNDS	20		-	ASE/NEUTRAL COMPOUNDS	. • E
PP#	CAS#		ug/t er ug/kgX (circle one)	P2 #	CAS#		ug/i er ug/kg ? (circle one)
(21A) _	88-06-2	2,4,6- trichlorophenol	L/200	(738)	50-32-8	benzo(a)pyrene	254,600
(22 A)	59-50-7	p-chloro-m-cresol	L/200	(74B)	205-99-2	benzo(b)fluoranthene	27,600
(24 A)	95-57-8	2- chiorophenoi	L/200	(75B)	207-01-9	benzo(k)fluoranthene	27,1000
(DIA)	120-13-2	2,4-dichlorophenol_	L/200	(76B)	218-01-9	chrysene	152,600
(3+A)_	105-67-9	2,4-dimethylphenol	L/200	(77B)	208-96-8	acenaphthy lene	185,000
(37 A)	88-75-5	2- nitrophenol	L/400	(78B)	120-12-7	Anthracene	258,000
(34A)	100-02-7	4-nitrophenol	L/1,000	(798)	191-24-2	benzo(ghi)perylene	56,900
		Z.4-dinitrophenol	L/1,000	(808)	86-73-7		279,000
(59 A)	51-28-5		L/400			fluorene	1,061,000
(60 A)	534-52-1	4,6-dinitro-2-methylphenol	L/200	(B1B)	85-01-8	phenanthrene	····
(64 A)	87-86-5	pentachlorophenol	L/200	(82B)	53-70-3	dibenzo(a,h)anthracene	60,900
(65A)	108-95-2	phenol	L/200	(83B)_	193-39-5	indeno(1,2,3-cd)pyrene	54,800
	В	ASE/NEUTRAL COMPOUNDS		(84B)	129-00-0	pyrene	400,000
(15)	83-32-9	acenaphthene	515,000			VOLATILES	
(3B)	92-87-5	benzidine	L/800	(2V)	107-02-8	acrolein	L/50
(EB)	120-82-1	1,2,4-trichlorobenzene	L/200	(3V)	107-13-1	acrylonitrile	L/50
(9B)	118-74-1	hexachlorobenzene	L/200	(4V)	71-43-2	benzene	2,300
(128)	67-72-L	hexachloroethane	L/200	(6V)	56-23-5	carbon tetrachloride	L/50
(18B)	111-44-4	bis(2-chloroethyl)ether	L/200	(7Y)_	108-90-7	Chlorobenzene	L/50
(208)	91-58-7	2-chloronaphthalene	L/200	(10V)	107-06-2	1,2-dichloroethane	L/50
(25B)	95-50-1	1,2-dichlorobenzene	L/200	(11V)	71-55-6	1,1,1-trichtoroethane	L/50
(26 B)	541-73-1	1,3-dichlorobenzene	L/200	(13V)	75-34-3	1,1-dichloroethane	L/50
	106-46-7	I,4-dichlorobenzene	L/200	(14V)	79-00-5	I,1,2-trichloroethane	L/50
(27B) (28B)	91-94-1	3,3'-dichlorobenzidine	L/400	(15V)	79-34-5	1,1,2,2-tetrachloroethane	L/50
				(16V)	75-00-3		L/50
(35B)	121-14-2	2,4-dinitrotoluene	L/400 L/400	(19V)	110-75-8	chloroethane	L/50
(36B)	606-20-2	2,6-dinitrotoluene	L/400			2-chloroethylvinyl ether	L/50
(37 B)	122-66-7	1,2-diphenylhydrazine	368,000	(23V)	67-66-3	chloroform	L/50
(39B)	206-44-0	fluoranthene		(29V)	75-35-4	1,1-dichloroethene	L/50
(40B)	7005-72-3	4-chlorophenyl phenyl ether	L/200	(30V)	156-60-5	trans-1,2-dichloroethene	L/50
(41B)	101-55-3	4-bromophenyl phenyl ether	L/200	(32V)_	78-87-5	1,2-dichloropropane	L/50
(42B)		bis (2-chloroisopropyl) ether	L/400	<u>(33V)</u>	10061-02-6	trans-1,3-dichloropropene	
(43B)	111-91-1	bis (2-chloroethoxy) methane	L/400		10061-01-05	cis-1,3-dichloropropene	L/50
(52B)	87-68-3	hexachlorobutadiene	L/200 L/200	(38V)	100-41-4	ethylbenzene	34,600
(33B)	77-47-4	hexachlorocyclopentadiene	L/200	(44V)	75-09-2	methylene chloride	36,700
<u>(%8)</u>	78-59-i	isophorone		(45V)	74-87-3	chloromethane	L/50
(55B)	91-20-3	naphthalene 2,	168,000	(46Y)	74-83-9	bromomethane	L/50
(36B)	98-95-3	nitrobenzene	L/200	(47Y)	75-25-2	bromoform	L/50
(62B)	26-30-6	N-nitrosoc'phenylamine	L/200	(48Y)	75-27-4	bromodichloromethane	1750
(63B)	621-64-7	N-nitrosodipropylamine	L/200	(49V)	75-69-4	fluorotrichioromethane	1./50
(66B)	117-11-7	bis (2-ethylhexyl) phthalate	L/200	(50V)	75-71-8	dichlorodifluoromethane	L/50
(67 B)	85-68-7	benzyl butył phthalate	L/200	(51V)	124-48-L	chlorodibromomethane	L/50
(68B)	84-74-2	di-n-butyl phthalate	L/200	(85V)	127-18-4	tetrachioroethene	L/50
(69B)	117-84-0	di-n-octyl phthalate	L/200	(86V)	108-88-3	toluene	12,000
(70B)	84-66-2	diethyl phthalate	L/200	(87Y)	79-01-6	trichloroethene	L/50
(718)	131-11-3	dimethyl phthalate	L/200	(88V)	75-01-4	vinyl chloride	L/50
(728)			197,000				

ORGANICS ANALYSIS DATA SHEET - Page 2

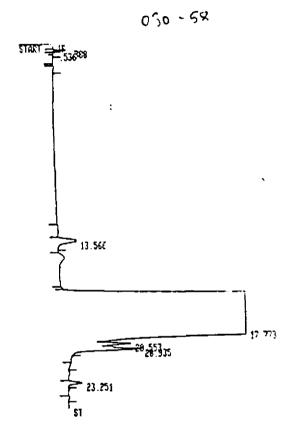
Sample Number


			•			L	BH-9
aboratori	y Name:	Laucks Testing L	aboratories, Inc	Case !	No: W	oodward-Clyde	
		81030-2			port No:		
-	,		on Limits by I 🔲 or 10 [] (Chec	k Box for Ap	opropriate "actor)	
		PESTICIDES				PESTICIDES	
			ug/L orug/log X			•	ug/L
PP#	CAS#		(circle one)	PP#	CAS #		or ug/kg) (circle one
(89P)	309-00-2	aldrin	130	(103P)	319-85-7	⊿8-BHC	L/20
(90P)	60-57-1	dieldrin	L/20	(104P)	319-86-8	∂ -BHC	L/20
(91P)	57-74-9	chlordane	L/20	(105P)	58-89-9	9/-BHC (Lindane)	180
(92P)	50-29-3	4,4'-DDT	<u>L/50</u>	(106P)	53469-21-9	PCB-1212	L/200
(93P)	72-55-9	4,4'-DDE	L/20	(107P)	11097-69-1	PCB-1254	L/200
(94P)	72-54-8	4,41-DDD	L/20	(108P)	11104-28-2	PC8-1221	L/200
(95P)	115-29-7	C -endosulfan	L/20	(109P)	11141-16-5	PC8-1232	L/200
(96P)	115-29-7	∠0 -endosulfan	L/20	(110P)	12672-29-6	PCB-1248	L/200
(97 P)	1031-07-8	endosulfan sulfate	L/50	(111P)	11096-82-5	PC8-1260	L/200
(98P)	72-20-8	endrin	L/20	(112P)	12674-11-2	PCB-1016	L/200
(99P)	7421-93-4	endrin aldehyde	L/20	(113P)	8001-35-2	toxaphene	L/2000
(100P)	76-44-8	heptachlor	L/20				
(101P)	1024-57-3	heptachlor epoxide	50*			DIOXINS	
(102P)	319-84-6	ФС-внс	L/20	(129B)	1746-01-6	2,3,7,8-tetrachlorodibenz	zo-p-dioxin L/0.71

	ACID COMPOUNDS			VOLATILES	
CAS #		ug/l or ug/kg X (circle one)	CAS#		ug/l or ug/kg X (circle one)
65-85-0	benzoic acid	L/2000	67-64-1	acetone.	L/75
9 5-48-7	2-methy lphenol	7800	78-93-3	2-butanone	L/75
108-39-4	4-methylphenot	L/100	75-15-0	carbondisulfide	L/50
95-95-4	2,4,5-trichlorophenol	L/2000	519-78-6	2-hexanone	L/75
			108-10-1	4-methyl-2-pentanone	L/50
BA	SE/NEUTRAL COMPOUN	. sas	100-42-5	styrene	L/50
62-53-3	aniline	L/100	108-05-4	vinyl acetate	L/50
100-51-6	benzyl alcohol	1/400	95-47-6	o-xylene	56,900
106-47-8	4-chloroaniline	1./1000	•	_	•
132-64-9	dibenzofuran	139.000			
91-57-6	2-methylnaphthalene	1,083,000	•		
88-74-4	2-nitroaniline	L/2000			
99-09-2	3-nitroaniline	L/2000			
100-01-6	4-nitroaniline	L/2000			4/82

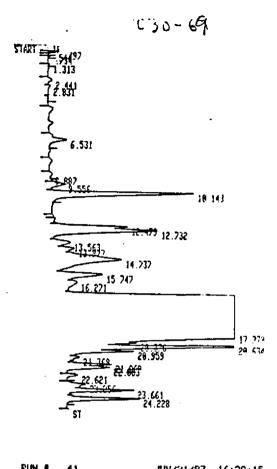
RUN 4	12	Jt	JH/21/83	17:10:17
HEIGHT% RT 0.418. 0.581 0.776 1.396 2.482 2.921 13.665 17.794 20.546 20.953 23.265	HEIGHT 16333 4973 958092 637422 326845 497837 43370 5827184 17772 108708 33512	TYPE 88 PB PB BB BB 88 BB	ARZHT 6.032 8.042 0.050 0.050 0.132 0.132 0.132 0.152 0.152 0.171	HF 1GHT% 0.193 0.059 11.316 2.525 2.840 0.512 68.788 0.210 1.283 0.396

10TAL HGHT= 8471288 MUL FACTOR= 1.8888E+88

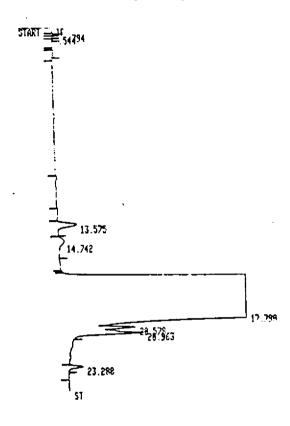

STOP

RUN #	48		J	UH/21/63	15:41:32
REIGHT% RT 8.482 8.554 8.746 1.333 2.366 2.479 4.511 5.423 6.554 9.564 10.136 12.482 12.717		HE1GHT 30911 4918 47762 72337 12931 38921 25436 21603 38779 124335 47232 975575 154362 36575	TYPE 88 P8	AR /HT 0.032 0.032 0.049 0.049 0.060 0.050 0.250 0.251 0.261 0.275 0.275 0.169	HE ICHT:: 1.634 8.266 2.525 3.824 8.694 2.058 1.345 1.142 2.058 6.573 2.497 51.573 8.160 1.934
13.567 13.989 14.749 15.757 16.327	•	36169 16046 114054 70476 23225	88 88 86 88	0.269 0.165 0.566 0.275 0.332	1.912 9.843 6.829 3.726 1.228

TOTAL HIGHT= 1891688 MUL FACTOR= 1.0000E+00

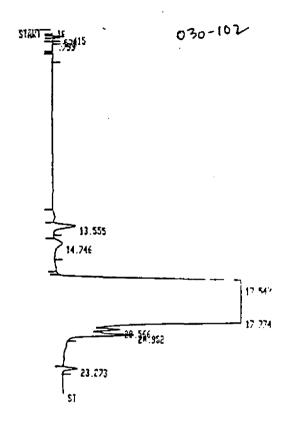

030-8
START FEB. 399
13.556
23.241 ST

KUN (38	J	UN/21/83	14:10:52
HE1GHT%				
RI	HE 1GHT	TYPE	AR/HT	HE I GHT 2
0.399	30285	PB	0.032	8.499
0.552	5424	86	8.641	0.093
6.753	3984	₽8	6.046	8.965
13.556	46172	BB	0.315	0.747
17.764	5900908	1 P8	1.855	95.469
20.532	45965	88	0.129	0.729
28.925	114981	88	0.159	1.858
23.241	34139	88	8.171	0.552



RUN #	39		JU	H/21/83	14:57:43
HEIGHT% RT 8.388 9.536 13.566 17.273 20.553 20.935		HE1CHT 31650 4897 46890 5923424 62207 116195	68	AR/HT 8.836 8.858 8.328 1.863 8.138 8.138	HE IGHT% 9.589 8.979 0.741 95.249 1.888
23.251		34415	88	0.170	8.553

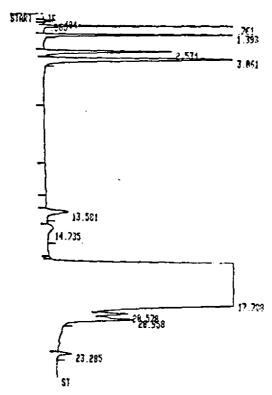
TOTAL HCHT= 6218900 MUL FACTOR= 1.0000E+00



KUN #	41	•	MK/51/83	16:28:15
HEIGHTA				
RT	HE I GHT	TYPE	ar/ht	HE IGHT2
0.397	28512	PB	6.633	8.264
8.544	5187	P8	0.039	8.848
0.734	6813	₽В	9 847	8 963
1.313	5974	P8	9. 9 75	0.655
2.441	18359	₽B	0.212	8.096
2.831	5827	88	981.9	0.054
6.531	44184	PB	8.296	0.489
8.887	6554	P8	6.190	0.061
9.556	33579	BB	9.277	8.311
10.143	350935	88	9.26 0	3,254
12.479	64839	PB	8.127	0.691
12.732	131726	88	9.160	1 221
13.563	32455	BB	8.263	8.301
13.977	24489	88	0.179	8.227
14.737	138926	88	0.533	1.288
15.747	93657	BB	0.277	8 .868
16.271	17732	B8	8.323	0.164
17.773	8575164	† BB	2.288	79,581
29 .376	27737	B8	6.687	6.257
28.634	585052	BB	8.145	5,424
28.959	93225	BB	6.129	8.864
21.369	15205	BB	0.132	0.141
21.869	61189	PB	8.125	8.567
22.083	49300	BB	0.054	0.45?
22.621	26682	88	8.161	8.247
23.256	29122	P8	0 166	8 278
23 661	145624	50	A 15F	1 750

RUN #	37	JL	JH/21/83	13:25:58
HEIGHT% RT 8.394 6.544 13.575 14.742 17.798 28.578 28.963 23.288	HEIGHT 27979 5373 47680 14974 5924948 68325 11981 34715	PB 88 1 PB PB 88	ARZHT 8.036 9.046 8.317 8.536 1.028 9.130 8.163 0.123	HEIGHT% 8.448 0.086 9.763 8.240 94.906 1.094 1.987 0.556

TOTAL HGHT= 6243800 MUL FACTOR= 1.0000E+80


•	
STATE WEST	
₩ # 83	
₹ :′%	
-	
ł	
ì	•
ŀ	
i	
1	
1	
ĺ	
1	
!	
13.553	
_	
14. <i>7</i> 51 ^ح	
-	
<u> </u>	
	12.5%1
	•
29.58 s	12,781
21.9	69
1	
_}	
F 23.285	
1	
¹ sī	
श	

RUH 0	34	•	JUH/21/63	10:54:51
HEIGHT%	HEIGHT	TYPE	AR/HT	HE IGHT?
₩.415	27 578	PB	0.935	6.498
0.578	5355	88	8.844	9 978
0.799	39 38	P8	0.049	9.852
13,555	52806	88	8.280	8.262
14.746	20910	₿B	8.498	8.384
17.543	163953	P8	0.000	2.380
17.724	6408444	† B8	2.470	93.833
29.566	52724	B B	8.138	0.765
20.952	117335	88	8.152	1.793
23.273	35322	B8	0.173	0.513

RUN #	35	J	UN/21/63	11:29:18
HEIGHT% RT 0.493 0.559 6.766 13.553 14.251 17.554 17.781 26.583 26.969	HEIGHT 30731 5323 4247 50571 20738 149399 6435896 41991 119801	TYPE 68 P8 B6 PB BB BB	AR /HT 8.835 8.841 8.364 9.501 6.990 2.485 9.154	Ht IGHT% 8, 446 9, 877 8, 862 8, 734 9, 391 2, 167 93, 358 9, 609 1, 726
23.285	35905	88	8.173	0.521

TOTAL HGHT= 6888400 MUL FACTOR= 1.0008E+00

TOTAL HGHT= 6893800 MUL FACTOR= 1.0000E+00

RUH 4	36		J	NH\51\83	12:33:39
HEIGHT					
RT		HE I CHT	TYPE	ar/HT	HEIGHTY
8.484		29545	88	0 .035	0.348
0.566		5276	88	0.054	0.062
0.761		945755	88	0.051	11.146
1.393		625453	P8	6.9 83	2.371
2.534		312073	PB	8.141	3.678
3.861		470684	PB	0.214	5.546
13.581		5 3653	PB	8.283	0.632
14.735	;	15099	88	0.473	8.178
17.788		5603712	† PB	1.060	69.399
28.578	l	70100	BB	8.134	0.826
20.958		118806	BB	0.164	1.499
23.285	i	35032	88	8 .179	0.413

TOTAL HCHT= 8485100 MUL FACTOR= 1.0000E+00

Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

LABORATORY NO.81030-d

August 8, 1983

DATE

Chemistry Microbiology and Technical Services

CLIENT Woodward Clyde Consultants

100 Pringle Avenue

Walnut Creek, CA 94596

ATTN: Tom Bailey

REPORT ON

SOIL

SAMPLE IDENTIFICATION

Marked as shown below:

TESTS PERFORMED AND RESULTS:

1) BH-9 D-1 D. Spencer

2) BH-9 D-2 D. Spencer 5/16 3) BH-9 D-3 D. Spencer 5/16 D-4 4) BH-9 D. Spencer 5/16 5) BH-9 5/16 D-5D. Spencer 6) BH-9 D-6 D. Spencer 5/16 8) BH-9 D-8 D. Spencer 5/16 9) BH-16 D-1 D. Spencer 5/16 10) BH-16 D-2 5/16 D. Spencer 11) BH-16 D-3 D. Spencer 5/16 12) BH-16 D-4 D. Spencer 5/16 13) BH-16 D-6 D. Spencer 5/16 14) BH-16 D-7 D. Spencer 5/16 15) BH-16 D-8 5/16 D. Spencer 16) BH-16 D-9 D. Spencer 5/16 17) BH-1 D-1 5/17 D. Spencer 18) BH-1 D-2 D. Spencer 5/17 19) BH-1 D-35/17 D. Spencer 20) BH-1 D-4D. Spencer 5/17 21) BH-1 D-5 D. Spencer 5/17 22) BH-1 D. Spencer 5/17 **D-6** 23) BH-1 D-75/17 D. Spencer 25) BH-2 D-35/17 D. Spencer 26) BH-2 D-4 5/17 D. Spencer 27) BH-2 D-55/17 D. Spencer 28) BH-2 D. Spencer D-6 5/17 29) BH-2 D-7 D. Spencer 5/17 5/17 30) BH-12 D-1 D. Spencer 31) BH-12 D-2 D. Spencer 5/17 32) BH-12 D-3 5/17 D. Spencer 33) BH-12 D-4 5/17 D. Spencer 34) BH-12 D-5 D. Spencer 5/17 35) BH-12 D-6 D. Spencer 5/17 36) BH-15 D-1 D. Spencer

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

5/16

Testing Laboratories, Inc. 940 South Harney Street, Seattle, Washington 98108 (206) 767-5060

Chemistry Microbiology and Technical Services

1

PAGE NO

2

LABORATORY NO.

81030-d

Woodward Clyde Consultants

37) BH-15 D-2 ;D. Spencer 5/17 5/17 38) BH-15 D-3D. Spencer D-439) BH-15 5/17 D. Spencer D-55/17 40) BH-15 D. Spencer 41) BH-15 D-6 D. Spencer 5/17 42) BH-15 D-7 5/17 D. Spencer 43) BH-2 D-1 5/17 D. Spencer 44) BH-7 5/18 D-1 D. Spencer D-2 45) BH-7 D. Spencer 5/18 46) BH-7 D-3D. Spencer 5/18 47) BH-7 D-4 5/18 D. Spencer 48) BH-7 D-5 5/18 D. Spencer 49) BH-7 D-6 5/18 D. Spencer 50) BH-7 D-7 D. Spencer 5/18 51) BH-11 5/18 D-1 D. Spencer 52) BH-11 D-2 D. Spencer 5/18 53) BH-11 D-3 5/18 D. Spencer D-4 54) BH-11 D. Spencer 5/18 55) BH-11 D-5 5/18 D. Spencer 56) BH-11 D-6 D. Spencer 5/18 D-7 57) BH-11 D. Spencer 5/18 58) BH-11 5/18 D-8 D. Spencer 59) BH-14 D-1 D. Spencer 5/18 60) BH-14 D-2 5/18 D. Spencer D-3 5/18 61) BH-14 D. Spencer 62) BH-14 D-4 5/18 D. Spencer 63) BH-14 D-5 5/18 D. Spencer 64) BH-14 D-6 D. Spencer 5/18 65) BH-14 D-7 5/18 D. Spencer 66) BH-4 D-1 D. Spencer 5/18 67) BH-4 D-2 5/18 D. Spencer D-3 68) BH-4 D. Spencer 5/18 69) BH-4 D-4 5/18 D. Spencer 70) BH-4 D-5 5/18 D. Spencer 71) BH-4 D-6 D. Spencer 5/18 72) BH-4 D-7 D. Spencer 5/18 73) BH-6 D-1 D. Spencer 5/19 74) BH-6 D-2 D. Spencer

Lauces Testing Laboratories, Inc. 940 South Harney Street. Seattle, Washington 98108 (206) 767-5060

Chemistry Microbiology, and Technical Services

PAGE NO.

3

LABORATORY NO.

81030-d

Woodward Clyde Consultants

75)	BH-6	D-3	D.	Spencer	5/19	
77)	BH-6	D-5	D.	Spencer	5/19	
78)	BH-6	D-6	D.	Spencer	5/19	
79)	BH-8	D-1	D.	Spencer	5/19	
80)	BH-8	D-2	D.		5/19	
81 Ś	BH-8	D-3		Spencer	5/19	
82)	BH-8	D-4	D.	Spencer	5/19	
83)	BH-8	D-5	D.	Spencer	5/19	
84)	BH-8	D-6	D.	Spencer	5/19	
85)	BH-8	D-7	D.		5/19	
86)	BH-8	D-8	D.	Spencer	5/19	
87)	BH-8	D-9	D.	Spencer	5/19	
88)	BH-12	D-7	D.	Spencer	5/19	231
89)	BH-5	D-1	Ď.	Spencer	5/20	
90)	BH-5	D-2	D.	Spencer	5/20	
91)	BH-5	D-3	D.	Spencer	5/20	
92)	BH-5	D-4	D.	Spencer	5/20	
93)	BH-5	D-5		Spencer	5/20	
94)	BH-5	D-6	D.	Spencer	5/20	
95)	BH-5	D-7	D.	Spencer	5/20	
96)	BH-5	D-8	D.	Spencer	5/20	
97)	BH-5	D-9	D.		5/20	
98)	BH-10	D-1	D.	Spencer	5/20	
99)	BH-10	D-2	D.	Spencer	5/20	
100)		D-3	D.	Spencer	5/20	
101)	BH-10	D-4	D.	Spencer	5/20	
102)	BH-10	D-5	D.	Spencer	5/20	
103)	BH-10	D-6	D.		5/20	
104)		D-7		Spencer		
104)	DU-10	U-/	D.	Spencer	5/20	

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

4

Woodward Clyde Consultants

LABORATORY NO

81030-d

128) T-1:1 129) T-1:2 130) T-1:3 131) T-1:4	D. D.	Spencer Spencer Spencer Spencer	6/4 6/4 6/4	1220 1225 1232
132) T-1:5 133) T-1:6		Spencer	6/4	
134) T-1:7		Spencer Spencer	6/4 6/4	1250
135) T-1:8		Spencer	6/4	1230
136) T-2:1		Spencer	6/4	
137) T-2:2	D.	Spencer	6/4	145
138) T-3:1	D.	Spencer	6/4	250
139) T-3:2	D.	Spencer	6/4	
140) T-3:3	D.	Spencer	6/4	
141) T-3:4	D.	Spencer	6/4	
142) T-4:1	D.	Spencer	6/7	
143) T-4:2	D.	Spencer	6/7	
144) T-4:3	D.	Spencer	6/7	
145) T-4:4	D.	Spencer	6/7	
146) T-4:5	D.	Spencer	6/7	
147) T-4:6	D.	Spencer	6/7	

Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology and Technical Services

PAGE NO.

5

LABORATORY NO.

81030-d

Woodward Clyde Consultants

		Fluor	rescence	Screen,	% as be	enzo(a)py	rene		
1		3	4	5	6	8	9	10	_11
0.005	1.7	2.2	1.3	0.014	1.0	L/0.001	0.004	1.1	0.001
_12	_13	_14	_15	_16	17	18	19	20	_21
L/0.001	L/0.001	L/0.001	L/0.001	L/0.001	0.002	0.93	4.8	L/0.002	0.001
22	23	25	26	_27	28	_29	30	31	32
0.004	0.009	0.003 1	/0.001	L/0.001	0.001	L/0.001	0.004	L/0.001	0.001
_33	_34	35	36	_ 37	38	39	40	41	42
0.003	0.001	0.003	0.004	0.008	0.002	L/0.001	L/0.001	0.002	0.001
43	44	45	46	47	48	49	50	51	52
L/0.001	0.91	0.081	0.74	0.97	0.88	0.001	0.008	0.007	0.017
_53	54	_55	56	57	59	60_	61	62	63
0.002	0.002	0.003	0.003	L/0.001	0.022	0.007	0.007	L/0.001	0.009
_64	_65	66	67	68	70	71	72	73	74
L/0.001	L/0.001	L/0.001	0.002	0.056	3.4	0.75	0.041	1.0	0.023
_75	_77	78	79	80	81	82	83	_84	85
0.94	0.002	0.001	0.86	0.054	0.013	0.94	1.2	1.1	1.8
86	_87	_88	_89	90	91	92	93	94	95
1.3	0.042 1	L/0.001	0.73	1.0	0.90	0.89	0.89	0.006	0.006

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Testing Laboratories, Inc. 943 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology and Technical Services

PAGE NO.

6

Woodward Clyde Consultants

LABORATORY NO.

81030-d

		Fluo	rescence	Screen,	% as be	enzo(a)p	yrene
96	97_	98	99	100	101	103	104
1.9	0.71	0.63	0.009	0.002	0.002	L/0.001	L/0.001

							128	129	130
							0.67	0.73	0.008
131	132	133	<u>134</u>	135	_136_	137	138	139	140_
0.37	1.3	0.002	L/0.001	L/0.001	0.002	0.50	0.32	0.84	1.0
141	142	143	144	145	146	147			
1.2	1.9	0.43	0.080	0.28	0.48	1.7			

Extractables

parts	ner	million	(ma/ka)_	dry basis
parts	pei	111111111	(mg/kg/s	_uiy Dasis

	_58	_69	102	Blank*
acenaphthene acenapthylene anthracene benzo(a)anthracene benzo(b)fluoranthene benzo(k)fluoranthene	L/0.05	38.	L/0.05	L/0.05
	L/0.05	L/0.15	L/0.05	L/0.05
	0.88	96.	L/0.05	L/0.05
	L/0.05	21.	L/0.05	L/0.05
	2.0	18.	L/1.	L/1.
benzo(g,h,i)perylene	0.68	8.2	L/1.	L/0.5
benzo(a)pyrene	0.34	7.6	L/0.5	L/0.5
2-chloronaphthalene	L/0.05	L/0.15	L/0.05	L/0.05
chrysene	L/0.10	23.	L/0.10	L/0.10

Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206)767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

7

Woodward Clyde Consultants

LABORATORY NO.

81030~

	parts p	er million	, (mg/kg),	dry basis
	_58	69	102	Blank*
dibenzo(a,h)anthracene	0.31	5.6	L/0.10	L/0.10
1,2-dichlorobenzene	L/0.05	L/0.15	L/0.05	L/0.05
1,3-dichlorobenzene	L/0.05	L/0.15	L/0.05	L/0.05
1,4-dichlorobenzene	L/0.05	L/0.15	L/0.05	L/0.05
fluoranthene	2.3	48.	L/0.05	L/0.05
fluorene	0.24	26.	L/0.05	L/0.05
indeno(1,2,3-cd)pyrene	L/0.10	7.5	L/0.10	L/0.10
isophorone	L/0.10	L/0.30	L/0.10	L/0.10
2-methylnaphthalene	0.20	L/0.15	L/0.05	L/0.05
naphthalene	0.69	9.5	L/0.05	L/0.05
phenanthrene	0.84	91.	L/0.05	L/0.05
pyrene	2.5	56.	L/0.10	L/0.10
1,2,4-trichlorobenzene	L/0.05	L/0.15	L/0.05	L/0.05
bis(2-ethylhexyl)phthalate	L/0.05	L/0.15	L/0.05	20.1
butyl benzyl phthalate	L/0.05	L/0.15	L/0.05	L/0.05
di-n-butyl phthalate	L/0.05	L/0.15	L/0.05	L/0.05
diethyl phthalate	L/0.05	L/0.15	L/0.05	L/0.05
dimethyl phthalate	L/0.05	L/0.15	L/0.05	L/0.05
di-n-octyl phthalate	L/0.05	L/0.15	L/0.05	0. 087
aniline	L/0.05	L/0.15	L/0.05	L/0.05
benzidine	L/0.2	L/0.6	L/0.2	L/0.2
benzyl alcohol	L/0.05	L/0.15	L/0.05	L/0.05
bis(2-chloroethyl)ether	L/0.05	L/0.15	L/0.05	L/0.05
bis(2-chloroethoxy)methane	L/0.05	L/0.15	L/0.05	L/0.05
bis(2-chloroisopropyl)ether	L/0.05	L/0.15	L/0.05	L/0.05
4-bromophenyl phenyl ether	L/0.05	L/0.15	L/0.05	L/0.05
4-chlorophenyl phenyl ether	L/0.05	L/0.15	L/0.05	L/0.05
4-chloraniline	L/0.05	L/0.15	L/0.05	L/0.05
dibenzofuran	L/0.05	L/0.15	L/0.05	L/0.05
3,3'-dichlorobenzidine	L/0.2	L/0.6	L/0.2	L/0.2
1,2-diphenylhydrazine	L/0.05	L/0.15	L/0.05	L/0.05
hexachlorobenzene	L/0.05	L/0.15	L/0.05	L/0.05
hexachlorobutadiene	L/0.05	L/0.15	L/0.05	L/0.05
hexachlorocyclopentadiene	L/0.05	L/0.15	L/0.05	L/0.05

Laules Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Chemistry Microbiology, and Technical Services

PAGE NO.

8

Woodward Clyde Consultants

LABORATORY NO.

81030-d

parts per million (mg/kg), dry basis

hexachloroethane L/0.05 2-nitroaniline L/0.05 3-nitroaniline L/0.05 4-nitroaniline L/0.05 nitrobenzene L/0.05 n-nitroso-diphenylamine L/0.05 n-nitroso-dipropylamine L/0.05	L/0.15 L/0.15 L/0.15 L/0.15 L/0.15 L/0.15 L/0.15	L/0.05 L/0.05 L/0.05 L/0.05 L/0.05 L/0.05 L/0.05	L/0.05 L/0.05 L/0.05 L/0.05 L/0.05 L/0.05

Key

L/ indicates "less than"

*A water blank was used and results calculated on a 20 gram dry weight basis. **Benzo(b)fluoranthene and benzo(k)fluoranthene are reported as one value in the benzo(b)fluoranthene column.

Respectfully submitted,

Laucks Testing Laboratories, Inc.

Mike Nelson

cc Don Spencer The Dalles, OR

MN:bg

APPENDIX D-6 WATER SAMPLE ANALYSIS RESULTS

LECES Testing Laboratories, Inc.

Certificate

940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Chemistry Microbiology and Technical Services

CLIENT Woodward Clyde Consultants c/o Don Spencer 2110 E. 10th Street The Dalles, OR 97058

LABORATORY NET 030-C

DATE

July 27, 1983

REPORT ON

WATER

SAMPLE IDENTIFICATION

Marked as shown below:

148) BH-1:1

D. Spencer 6/8

TESTS PERFORMED AND RESULTS

149) BH-2:2

D. Spencer 6/8

151) BH10 152) BH15

153) BH8

156) BH5

157) BH6 158) BH8A

159) BH2A

160) BH5A

161) BH12

6/20/83

6/20/83

6/20/83

6/21

D. Spencer

167) BH12A

glass electrode at 25°C

	148	149		<u>151</u>	152	153
рН	6.1	6.4		6.4	6.1	6.2
		155	156	157	158	_159_
рН		6.5	6.3	6.3	6.6	7.3
	160	161				167
pН	7.0	7.8				7.0

Lateral Cass Testing Laboratories, Inc. 940 South Harney Street. Scattle. Washington 98108 (206) 767-5060

Certificate

2

Chemistry Microbiology and Technical Services

Woodward Clyde Consultants

100

PAGE NO

LABORATORY NO

81030-с

			micromhos	s/cm at 25°	С	
	148	_149_		151	 152	153
Specific Conductivi	ty 620.	750.		720.	450.	740.
			156	157	158	159
Specific Conductivi	ty		1000.	360.	950.	510.
	160	_161_				167
Specific Conductivi	ty 380.	410.				990.
		pa	rts per mi	llion (mg/	<u>L)</u>	
	148	149_		_151_	152	_153
Total Alkalinity as CaCO3 Sodium Calcium Magnesium Potassium Chloride Sulfate as SO4 Nitrate + Nitrite Total Phenol	310. 26. 60. 30. 14. 20. L/1. L/0.05 0.009	370. 26. 90. 30. 16. 29. L/1. L/0.05	150	300. 56. 42. 25. 23. 39. L/1. 0.08	230. 17. 44. 22. 16. 12. 2. 0.10	310. 34. 45. 22. 18. 19. 1/1. 0.11
Total Alkalinity as CaCO3 Sodium Calcium Magnesium Potassium Chloride			370. 78. 86. 23. 18. 93.	160. 25. 38. 5.4 13.	480. 40. 92. 46. 25. 31.	270. 25. 55. 23. 14.

This report is submitted for the exclusive use of the person, permership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of acience.

Testing Laboratories, Inc. 943 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology and Technical Services

PAGE NO.

Δ

Woodward Clyde Consultants

LABORATORY NO

81030-с

parts per billion (ug/L)

			156	157	158	159
Benzene Toluene Xylenes Pentachlorophenol Total PNAs as benzo			17000. 17000. 17000.	94. 39. 150.	14000. 9200. 4600.	L/1. L/1. L/1. L/10.
pyrene, corrected for naphthalene	12.2	42.5	4240.	930.	22700.	2640.
	160	161				167
Benzene Toluene Xylenes Pentachlorophenol Total PNAs as benzo		1/1. 1/1. 1/1.				L/1. L/1. L/1.
pyrene, corrected for maphthalene	5210.	6.8				745.

Key

L/ indicates "less than"

cc Paul Farenthold
Woodward Clyde Consultants

Respectfully submitted,

Laucks Testing Laboratories. Inc.

Mike Nelson

MN:bg

Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206)767-5060

Certificate

Chemistry Microbiology and Technical Services

PAGE NO

3

Woodward Clyde Consultants

LABORATORY NO

81030-c

	parts	per	milli	<u>on (</u>	(mg/L)
--	-------	-----	-------	-------------	--------

			156	<u> 157</u>	158	159
Sulfate as SO4 Nitrate + Nitrite Total Phenol			6. 0.09	L/1. L/0.05	33. 0.10	4. 0.28 L/0.005
	160	161				167
Total Alkalinity as CaCO3 Sodium Calcium Magnesium Potassium Chloride Sulfate as SO4 Nitrate + Nitrite Total Phenol	340. 4.1 110. 46. 3.6 10. 1/1. 0.15	220. 28. 41. 17. 15. 8. L/1. 0.48				500. 24. 140. 48. 24. 42. L/1. 0.36

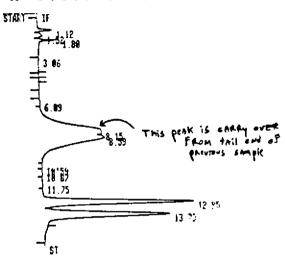
parts per billion (ug/L)

	148	149	_151_	152	153
Benzene Toluene Xylenes Pentachlorophenol	L/1. L/1. 2.1 L/10.	L/1. L/1. L/1. L/10.	24. L/1. 5.0	L/1. L/1. 6.0	7000. 4100. 5200. 86.
Total PNAs as benz pyrene, correcte for naphthalene	o(a)	5.7	12.8	10.4	1839.

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

SETA

JH ±	96	J	UBZ171G	15 : 15 : <u>26</u>
FI 6.74 1 157 1 52 2 38 5.96 10.62 11.11	PRE 6 76 249.79 19971 7003 2651 10219 5140 964 2962	TYP1 P6 R6 R0 D B6 B8 B8 PB B8	UH / 1 7 () UH / 1 7 () 1 R 2 P 3 R 4 P 5 R	840ENT 4 90E 5 90E 6 98E 8 844 6 144 8 844 8 136
11.35 11.93 13.18 13.25	1306 65 1621800 1626400	0 88 FB P8 BB	6R 24 8R	ଓ ଉଗ୍ଟ ଖ ଉଗ୍ଟ 42 ଗ୍ରମ 41 ସ୍ଥ


KUN T	65	•	JUNZ17783	12:16:13
1810				
E.T	AREA	TYPE	CAL#	pm(ittur
1.14	12684	F/E		3 880
1.54	14259	6.5		ର ଜନ୍ମ
1,82	14336	E E		ର ଜନନ
3.03	3463200	PE	18	go Sume
i €°	1839300	PE	2 R	41 punta
9.76	1590900	PE	3F	40 agrance
10 45	96 3360	Į:Ę.	4R	us assured
16 63	1093100	RE.	₹F.	46 destrocar
11.75	1878286	E:E.	ER	44 ammer
12.97	1688708	PE	28	جنبهميه و و
13.81	1645860	BE	SR	التعبيقية وو

TOTAL AREA= 1.4196E+07 ISTD AMT= 4.2000E+01 MUL FACTOR= 1.0000E+00 TOTAL AREA= 3314500 ISTD ART= 4 2680E+01 MUL FACTOR= 1 .0000E+00

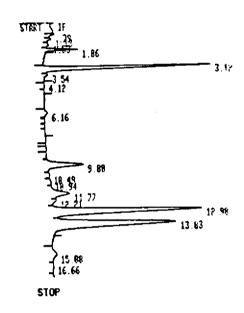
RUN # 91 1D 81030-	-148	JUN/17/	/63 16:87:47
1STD	ADEA T	UDE 64. A	AHOUNIT
RT	AREA T		тичона
6.79	736	PB	8 8 99
1.14	36632	PE	9.090
1.56	23633	BB	99 9. 9
1.85	93782 N	BB	8. 0 00
3.17	14473	BE IR	e .343
3.61	5941	88	8 89 9
4.26	2584	PB	0.000
6.23	36667	PE 2R	8.841
Ž.38	3621	B6	0.000
8.26	3822	88	8.008
9.83	21177	PB 3R	
19.54	1881	BB 4R	
10.96	18234	RB 5R	
11.82	66489	BB 6R	1.575
13.82	1689100	PB 74	42.000
13.87	1678600	86 8R	48.877

TOTAL AREA= 3689400 ISTD AMT= 4.2008E+01 MUL FACTOR= 1.0000E+00

ID 81838-149 @

RUH # 92 ID 81638		J	UH/17/83	16:31:15
ISTD RT 1.12 1.52 1.80	AREA 47252 22838 12446	TYPE PB BB BB	CAL#	AMOUNT 0.00 0.00 0.00 0.00
RUN 8 92 10 81630	-149	JL	MZ17Z23	16+31+15
1STD RT 1.12 1.52 1.80	AREA T 47252 22839 12446	PB BB	CAL	AMOUNT A 990 9 999 9 999
3.66 6.09 8.15 8.59 10.67	1689 6772 8 8 3445	68 P8 BB BB PB	1R 2R 5R	0.042 0.161 0.000 0.000 8.150
11.25 12.95 13.29	2412 1629800 1658880	88 88	6R 74 8R	0 059 42 890 41 844

TOTAL AREA= 3384780 ISTD AMT= 4.200RE+01 MUL FACTOR= 1.0000E+00 A STOP


A. 10.

1

*

1

Sept.

RUN # 94 ID 81838-	-151	JUH	17/83	17:18:18
1STD RT			CAL	THUOMA 989 B
0.79 1.13 1.53	5161 12720 14768	86 86 88		0,000 0,000
1.86 3.12	121270 1006160	88 PB	1R	9.000 24.316 9.000
3.54 4.12	19736 2985 27944	88 88 PB	<u>₹</u>	9 666 8_653
6.16 9.88 10.49	482198 ⁻ 6598	PB 88	3R 4R	11.004 8.296
10.94 11.77	8933 179789	88 88 88	5R 6R	6.383 4.339 6.899
12.21 12.98 13.83	13550 1657900 16500 00	86 88	7 L 88	42,666 48,937
15.88 16.66	69896 7180	BB PB		9, 99 199, 13

TOTAL AREA= 5196700 ISTD AMT= 4.2000E+01 MUL FACTOR= 1.0000E+08

81038-1526 - 11 4.16 13 84 ≥ 14.55 æ

STAKE OF SECOND	5.85	ouly I	All VAlues by 5 wiredeced le as samp	eg.
STOP	AT 48		9. 62 10. 81 11. 91 13. 86	

AREA TYPE

PB

BB

₿B 88

86

88

BB

BB

BE

₿B

BB

88

B8

483 **2058**5

2618 2669

44967

23384

22961

64367

3079400

5.9296E+07

7694 2477 3.6189E+87

2.1597E+87

JUN/17/23 18:04:04 \53

CAL

28

36

4R 5R 6R 7R

AMOUNT

999.9

8.898 8.898 8.898 8.898

0.000

0.000

0.000

284.848 92.488 42:353

1405 900

4 8 95	-152	J	UH/17/83	17:42:51
TD				
ŔŦ	AREA	TYPE	CAL	ANOUNT
B.74	8	PB		9.999
1.13	8385	BB		9.000
1.55	90 97	88		0.0 00
1.83	5411 90 8	88		8.098
3.15	4688	PB	18	6.118
4.16	3394	PB		8.988
4.93	10196	BB		8 990
5.53	8549	86		6.66 9
6.18	13777	88	2R	0.341
7.81	86221	B6		8.899
7.83	17696	88		9.960
8.82	5698	PB		0.000
9.68	9	BB		9.090
9.18	313	88		P 699
9.21	14135	BB		0.000
9.99	17985	BB	30R	0.519
6.41	69156	88	4R	3.288
0.79	30825	BB	5R	1.399
1.36	1892	BB		0.869
1.76	52229	BB	6R	1.336
2.54	48936	B8		8.999
3.88	1564100		74	42.000
3.84	1563180	88	8R	41,186
4.55	197570			9.000

9.82 10.51 10.94 11.81 13.00 13.87 1.4796E+87 1.1998E+87 3721588 1748288 BB TOTAL AREA= 1.5244E+88 NUL FACTOR= 1.8080E+88

KUN # 96 ID 81638-153

ESTD ŔŦ


0.79

1.15

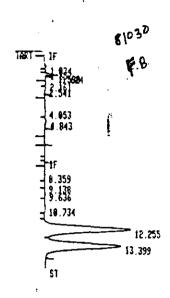
1.44 1.53 1.85 2.17 2.61 3.15 3.56 4.60 5.50

6.19 7.84

TAL AREA= TAL AREA= 9139486 ISTD AMT= 4.2000E+01- - -L FACTOR= 1.8888E+60

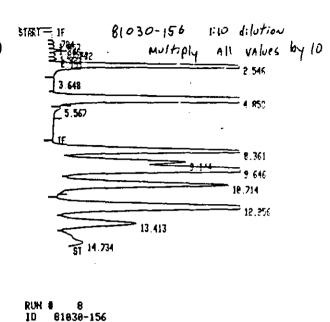
RUN # 5

ISTO									
RT	AREA	TYPE	CAL	AMOUNT	DID: A	_			
9 .808	0	PB		A.000	RUH #	6			
1.052	21244	₽ B		8.9 60	I CTO				
1.363	31402	88		0.000	מדפו		_		
1.618	136290	88		8.99 6	RT		TYPE	CAL#	AMOUNT
2.181	3136	₿B		Ø. 9 90	1.049	28251	PB		8.980
2.547	1.0640E+07	BB	1R	161 388	1.357	16763	88		0.000
4.066	15868	88		0 80 6	1.613	160938	BB		8.000
4.865	5737109	BB	2R	82 765	2.171 2.570	3552	88		0.09e
8.381	5368400	PH	3R	80.853	2.539	12535	88	1R	0.191
9.165		HH	4 R	83.893	4.862 4.841	33139	88		8.6 88
9.672	6683300	HH	5R	94.897		48881	68	2R	0.5 28
18.741	6418800	HH	6R	RP. 873	8.354 9.151	26484	HH	3 R	8 .398
12.294	5947600	HH	7&	83.880	9.627	27951	HH	4R	. 0.411
13.439	5486209	HH	8 R	79.419	18,729	42398 50636	HH	5R	0.597
					12.268	. 59676	HH	ER	0 827
					13,411	5910500	HH	7 t	83.09 0
	REA= 5.2205				15,411	5595788	HH	8R	81.811
***	AWT . A 3000	F + D 4							


TOTAL AREA= 5.2265E+07
ISTD AMT= 8.3800E+01

MUL FACTOR= 1.0000E+00

TOTAL AREA= 1.1950E+07
ISTD AMT= 8.3000E+01


MUL FACTOR= 1.0000E+01

RCALB 6	2			
ISTD			CALIB R	UNS 2
REF % I	RTM:	3.66	% RT¥:	3.00
CALE	RT		AMT	ANT/ARFA
1R	2.5	l 1.	6000E+02	1.5866E-85
2R	4.8	3 8.	2889E+81	1.4329E-05
3R	8.35	58.	9998E+91	1,4958E-85
4R	9.13	3 8.	3888E+81	1.4566E-85
5R	9.64	9.	3886E+81	1.3967E-05
6R	18.7	1 8.	8000E+01	1.3748E-85
74	12.20	5 8.	3800E+01	1.3925E-05
88	13.4	8 8.	0880E+01	1.4498E-85

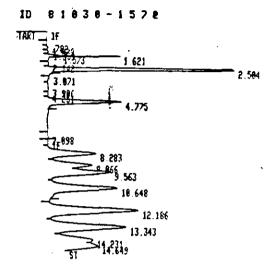
RUN #	7			
1STD	4554			
RT	AREA	TYPE	CAL	AMOUNT
1.034	14442	PB		8.89g
1.357	16322	88		9.009
1.590	6	88		8.886
1.624	8	D BB		9.888
2.161	12248	BB		0.889
2.541	9779	88	18	0.150
4.653	33681	BB		8.998
4.843	45845	88	2Ř	8.658
8.359	21102	PH	3R	6.322
9 138	28943	HH	48	0.311
9.636	33753	HH	5R	8.481
10.734	47168	HH	6R	8,651
12.255	5847686	HH	71	83,889
13.399	5559189	нн	8R	82.168

TOTAL AREA= 1.1661E+07 ISTD ANT= 8.3000E+01 MUL FACTOR= 1.0000E+00

ISTD
RT AREA TYPE CAL# AMOUNT
0.784 0 BB 0.000
1.057 30915 BB 0.000

BB

0.000


31899

ESCAPE

1.348

RUN # ID 81030-156 ESTD RT AREA TYPE CAL **AMOUNT 3**8915 0.784 BB 0.000 1.857 1.348 BB 9.000 Actual Vales 8.888 Set 11 letel 8.888 Sample 8.888 31699 ₿₿ 6 BB 6 D BB 1.594 1R 1699 531.58A 1.632 1.921 42395 BB 1.7c1 2.191 567/6 2.546 3.5283E+87 2.48 39374 BB BB 3.648 39374 4.858 3.8879E+87 5.567 8 BB 8.000 1747 545.620 17,000 BB BB 0.080 574 101 490 5,600 317 99 173 3,200 810 270 900 8,600 8.361 1.2148E+97 9.144 6886688 PH 4R 203-123-200 2 000 0 9.646 1.9389E+07 10.714 1.1462E+07 нн 5R 6R 7R HH 87 482 8.000 12.256 1.7335E+07 13.413 6034000 Ш HH 8R 14.734 3189200 1 HH Disaconel I.STD.

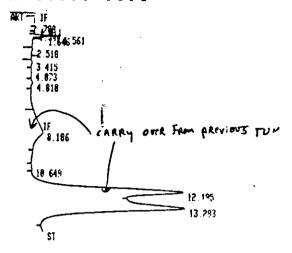
TOTAL AREA= 1.4992E+88 MUL FACTOR= 1.8888E+88

START = IF	
31,017 31,1281	
2.522	:
±3.921	
(5.517) 4 Rec	l
8.386	
9.576	
18.653	
12.17	
13.339	
STOP	

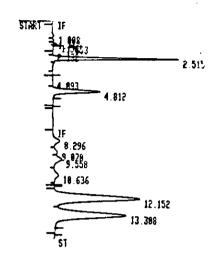
RUN # 12 10 81030-157

FOTAL AREA= 4.1893E+87 ISTD ART= 8.3880E+81 ULL FACTOR= 1.8880E+88

ISTD				
RT	AREA	TYPE	CAL#	ANOUNT
0.782	8	PB		8,886
1.029	28961	BB		9 998
1.339	27365	88		6.988
1.573	9	BB		8.000
1.621	214758	D 88		8.000
2.142	16548	88		9.989
2.504	6368900	B8	1R	94 449
3.871	7621	88		0.009
3.906	22325	88		B BAR
4.251	8293	88		8 969
4.775	2764998	BB	2R	38.992
7.698	1842	PB		9.998
8.283	2586899	YH	3R	38.963
9.066	2395309	HH	4R	34.339
9.563	4886188	HH	5R	5 5. 0 68
18.648	4671498	HH	6R	63, 209
12.186	6855988	HH	ŽŁ	83.086
13.343	5438198	HH	BR	77.598
14.231	2915588	HH		0 000
14.649	3562908	I HH		0 000


RUN # 16 ID 81030-158

ESCAPE

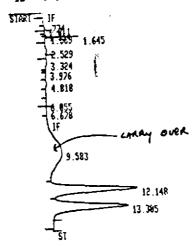

RUN # 16 ID 81030-158

ESTD)				
- KT	AREA	TYPE	CALE	ANOUNT
1.817	11802	PB		8.09 8
1.343	25447	BB		0.0 00
1.574	12014	BB		6.00 0
1.661	32609	88		0.809 - 15
2.158	9891	PB		9 898
2.522	3.5929E+87	BB	1R	541 329 13 439
3.921	133	PB		0 999
4.889	2.5628F+97	PB	28	367.228 1,100
5.517	8	88		e.eee
8.360	2521199	BH	38	37.692
9.684	2268388	HH	48	32 922
9.576	6834898	ЮН	5R	95.459
10.653	3990688	HH	6R	54.864-1340
12.175	1.2896E+87	HН	78	179 589 \i378
13.339	5811400	HH	8R	84.255

.TOTAL AREA= 9.5964E+87 MUL FACTOR= 1.8880E+88 D 81938-159@

ID 81838-1688 1:25 0:10TE

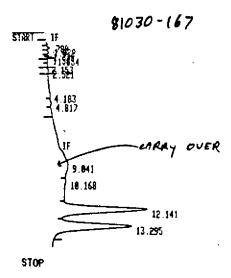
JH **€** 17) 81030-159


STD				
RT	area	TYPE	CAL	ANDUNT
8.788	11578	88		8 888
1.011	27812	88		8 809
1.344	15521	BB		8 886
1.561	218918	88		8.008
1.646	8	D BB		9.998
2.518	26423	BB	1R	0.398
3.415	31918	88		9.899
4.673	13289	88		8.000
4.810	65949	88	2R	0.945
8 186	1962000	BP	3R	2
0.649	6638	PP	<u>6</u> R	0. 0 91
2.195	1.4939E+07	PH	7 R	203 039
3.283	1.9265E+07	HH	8R	229 300

RUN # 18 1D 81938-169

ISTD				
RT	area	TYPE	CAL	AMOUNT
1. 86 8	15698	B8		8.888
1.342	16431	BB		8.660
1.562	17719	88		8.888
1.653	31866	0 B6		8.888
2.132	1577	₿B		0 000 × 25
2.515	2635888	88	1R	39.286 480
4.893	16509	P8		0.000
4.812	1811109	88	2R	25,673 640
8.296	469979	HH	3R	6.894
9.878	274340	нн	4R	3.953 77
9.558	634058	HH	5R	8.761 220
10.636	5 05250	HH	6R	6.872 172
12.152	6824888	HH	74	83.000
13.308	5 567608	HH	BR	79.856

TAL AREA= 3.6583E+07 L FACTOR= 1.0000E+00 TOTAL AREA= 1.8813E+87 ISTD AMT= 0.3880E+81 MUL FACTOR= 1.8888E+88


1D 8 1 8 3 8 - 1 6 1 8

RUN # 19 ID 81839-161

1STD			
RT	AREA TYPE	CAL	THUOPA
0.274	213 PS	₹	9.989
	15839 BI	_	ଜ ଜନ୍ ୟ
1,811			9.888
1.354	13868 PI	_	9.88
1.569	6721 B	В	
1.645	97718 D B	В	9.99
2.529	33961 P	B 1R	9 .5 8 9
	33260 B		0.000
3.324		В	8,000
3.976			8.675
4,818	1700.	B 2R	
6.955	1034 P	8	8,699
6.678	2498 F	18	999
		SH 5R	59.821
9.583	70000-	··· I.	83.660
12.148			83.826
13 385	5754399 1	4H 8R	ຄູລ . ພາ.ບ

TOTAL AREA= 1.6380E+07 1STD AMT= 8.3880E+01 MUL FACTOR= 1.8880E+00

RUN 4 23 ID 81038-164

ISTD				
RT	AREA 1	YPE	CAL	AMOUNT
6.789	29 83	PB		0.989
1.829	560 65	B8		6 6 68
1.339	33948	BB		8.09B
1.567	5714	₽B		9.99 9
1.654	26 326 (9.968
2.153	1556	PB		0.00A
2.521	18682	PB	1R	0.234
4.183	8	₽B		9.000
4.817	29765	88	2R	8.354
9.841	5872398	BH	4R	44. 10
10.168	2685498	H		8.000
12.141	71694 00	HH	7 Ł	83,000
13.295	5 768500	HP	8R	69.529

TOTAL AREA= 2.0865E+07 1STO AMT= 8.3900E+01 NUL FACTOR= 1.0000E+00